```
\Delta(1)=1, \Delta(10) = 11, \Delta(110) = 10101, \Delta(10101) = 11100111,
    \Delta(11001) = 101000101, \Delta(101010) = 1110000111.
```

No infinite sequence of palindromic triangular numbers has been found in base ten [4] or in other even bases $>$ two.

REFERENCES

1. Charles W. Trigg and Bob Prielipp, "Solution to Problem 3413," School Science and Mathematics, 72 (April 1972), p. 358.
2. Charles W. Trigg and E. P. Starke, "Triangular Palindromes," Solution to Problem 840, Mathematics Magazine, 46 (May 1973), p. 170.
3. Charles W. Trigg, Mathematical Quickies, McGraw Hill Book Co. (1967), Q112 p. 127.
4. Charles W. Trigg, "Palindromic Triangular Numbers," Journal of Recreational Mathematics, 6 (Spring 1973), pp. 146-147.
5. G. W. Wishard and Helen A. Merrill, "Solution to Problem 3480," American Mathematical Monthly, 39 (March 1932), p. 179.

A NOTE ON THE FERMAT - PELLIAN EQUATION $x^{2}-2 y^{2}=1$
 GERALD E. BERGUM
 South Dakota State University, Brookings, South Dakota 57006

It is a well known fact that $3+2 \sqrt{2}$ is the fundamental solution of the Fermat-Pellian equation $x^{2}-2 y^{2}=1$. Hence, if $u+v \sqrt{2}$ is any other solution then there exists an integer n such that $u+v \sqrt{2}=(3+2 \sqrt{2})^{n}$. Let $T=\left(a_{i j}\right)$ be the 3 -by- 3 matrix where $a_{12}=a_{21}=1$, $a_{33}=3$, and $a_{i j}=2$ for all other values. It is interesting to observe that there exists a relationship between the integral powers of T and $3+2 \sqrt{2}$. In fact, a necessary and sufficient condition for $M=T^{n}$ is that $M=\left(b_{i j}\right)$ with $b_{33}=2 m+1, b_{12}=b_{21}=m, b_{11}=$ $b_{22}=m+1$ and $b_{13}=b_{23}=b_{31}=b_{32}=v$, where $(2 m+1)^{2}-2 v^{2}=1$. If $n \geq 0$ both the necessary and sufficient condition follow by induction. Using this fact, it then follows for $\mathrm{n}<0$.

