FUNCTIONAL EQUATIONS WITH PRIME ROOTS

 FROM ARITHMETIC EXPRESSIONS FOR \mathscr{G}_{α}BARRY BRENT
Elmhurst, New York 11373

1. In this article, a generalized form of Euler's law concerning the sigma function will be obtained and used to derive expressions for \mathscr{C}_{α} which contain just functions involving addition and multiplication. These will be substituted in the equations

$$
\begin{equation*}
\mathscr{C}_{\alpha}(\mathrm{n})-\mathrm{n}^{\alpha}-1=0 \tag{1}
\end{equation*}
$$

to obtain equations with classes of solutions identical with the class of prime numbers.
2. Let

$$
\mathrm{F}(\mathrm{n})=\sum_{\mathrm{d} \mid \mathrm{n}} \mathrm{f}(\mathrm{~d}) .
$$

Proposition 1. If

$$
\sum_{n-1}^{\infty} F(n) x^{n}
$$

converges on some interval about 0 , then

$$
\begin{equation*}
0=n R(n)+\sum_{a=1}^{n} F(a) R(n-a), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{n=0}^{\infty} R(n) x^{n}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{f(n) / n} \tag{3}
\end{equation*}
$$

The proof mimics Euler's for the case $\mathrm{f}=$ identity, which is the recursive expression for sum of divisors he obtained by describing R. [1]

Proof.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} f(n) x^{n} /\left(1-x^{n}\right)=\sum_{n} f(n) \sum_{k} x^{n k} \\
& =f(1) x+f(1) x^{2}+f(1) x^{3}+f(1) x^{4}+f(1) x^{5}+f(1) x^{6}+\ldots \\
& +\mathrm{f}(2) \mathrm{x}^{2} \quad+\mathrm{f}(2) \mathrm{x}^{4} \quad+\mathrm{f}(2) \mathrm{x}^{6}+\ldots \\
& +\mathrm{f}(3) \mathrm{X}^{3} \quad+\mathrm{f}(3) \mathrm{x}^{6}+\cdots \\
& +f(4) x^{4}+\cdots \\
& +f(5) x^{5}+\cdots \\
& +f(6) x^{6}+\ldots \\
& =\sum_{n=1}^{\infty} x^{n} \sum_{d \mid n} f(d)=\sum_{n=1}^{\infty} F(n) x^{n} .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\sum_{n=1}^{\infty} f(n) x^{n} /\left(1-x^{n}\right)=\sum_{n=1}^{\infty} F(n) x^{n} \tag{4}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
0<\Pi\left(1-x^{\mathrm{n}}\right)^{\mathrm{f}(\mathrm{n}) / \mathrm{n}}<\infty \tag{5}
\end{equation*}
$$

on some interval about 0 . We show that (2) holds under (5) and then that (5) holds when

$$
\sum_{n=1}^{\infty} F(n) x^{n}
$$

converges on some interval about 0 .
Let (5) hold. We have the identity:

$$
\log \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{f(n) / n}=\sum_{1}^{\infty} f(n) / n \log \left(1-x^{n}\right)
$$

Differentiating, and substituting from (3) as (5) permits:

$$
\begin{aligned}
\sum_{1}^{\infty}-f(n) x^{n-1} /\left(1-x^{n}\right) & =\frac{\frac{d}{d x}\left[\begin{array}{l}
\infty \\
\left.\Pi_{1}\left(1-x^{n}\right)^{f(n) / n}\right]
\end{array}\right.}{\prod_{1}^{\infty}\left(1-x^{n}\right)^{f(n) / n}} \\
& =\left(\frac{d}{d x} \sum_{0}^{\infty} R(m) x^{m}\right) / \sum_{0}^{\infty} R(m) x^{m} \\
& =\sum_{0}^{\infty} m R(m) x^{m-1} / \sum_{0}^{\infty} R(m) x^{m}
\end{aligned}
$$

Hence, by (4),

$$
\begin{equation*}
-\sum_{0}^{\infty} m R(m) x^{m} / \sum_{0}^{\infty} R(m) x^{m}=\sum_{1}^{\infty} f(n) x^{n} /\left(1-x^{n}\right)=\sum_{1}^{\infty} F(n) x^{n} . \tag{6}
\end{equation*}
$$

and Eq. (6) gives:

$$
0=\left(\sum_{1}^{\infty} F(n) x^{n}\right)\left(\sum_{0}^{\infty} R(m) x^{m}\right)+\sum_{0}^{\infty} m R(m) x^{m} .
$$

So, for each $n \geq 0$, the coefficient x^{n} is 0 :

$$
0=\sum_{a=1}^{n} F(a) R(n-a)+n R(n)
$$

It remains to show that (5) holds when

$$
\sum_{n=1}^{\infty} F(n) x^{n}
$$

converges on some interval about 0. By Eq. (6),

$$
\sum_{1}^{\infty} F(n) x^{n}=-x d / d x \log P(x)
$$

where

$$
\mathrm{P}(\mathrm{x})=\prod_{1}^{\infty}\left(1-\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{f}(\mathrm{n}) / \mathrm{n}}
$$

Therefore,

$$
\begin{equation*}
P(x)=\exp \int-\sum_{1}^{\infty} F(n) x^{n-1} d x \tag{7}
\end{equation*}
$$

Hence $P(x)=0$ iff

$$
\int \sum_{1}^{\infty} F(n) x^{n-1} d x=\infty
$$

iff

$$
\sum_{1}^{\infty} \frac{F(n) x^{n}}{n}=\infty
$$

and $P(x)=\infty$ iff

$$
\sum_{1}^{\infty}(1 / n) F(n) x^{n}=-\infty
$$

Thus (5) holds iff

$$
\left|\sum_{1}^{\infty}(1 / n) F(n) x^{n}\right|<\infty
$$

on some interval about 0 , and this is the case when

$$
\left|\sum_{1}^{\infty} F(n) x^{n}\right|<\infty
$$

on the same interval. Q.E.D.
Now it is necessary to show that the conditions of Proposition 1 apply to $\mathscr{C}_{\alpha^{*}}$. Actually, we show a little more.

Proposition 2. Let

$$
\sum \mathrm{f}(\mathrm{~d})=F(\mathrm{n})
$$

Then,

$$
\left|\sum F(n) x^{n}\right|<\infty
$$

on some interval about 0 if and only if

$$
\left|\sum \mathrm{f}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}\right|<\infty
$$

on some interval about 0 .
Proof.

$$
\left|\sum \mathrm{F}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}\right|<\infty \rightarrow\left|\sum \mathrm{f}(\mathrm{n}) \mathrm{x}^{\mathrm{n}} / 1-\mathrm{x}^{\mathrm{n}}\right|<\infty \rightarrow\left|\sum \mathrm{f}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}\right|<\infty
$$

by (4) and comparison. For the other direction, let

$$
\left|\sum \mathrm{f}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}\right|<\infty
$$

By the root test,

$$
\lim \sup |f(n)|^{\frac{1}{n}}<\infty
$$

That is, $\sup L_{i}<\infty$, where

$$
L_{i}=\lim _{k}\left|f\left(a_{i k}\right)\right|^{\frac{1}{a_{i k}}}
$$

on some sequence $\left\{\mathrm{a}_{\mathrm{ik}}\right\}$.
Define $\left\{c_{k}\right\}$ by:

$$
\left|f\left(c_{k}\right)\right|=\max _{d \mid a_{k}}|f(d)|
$$

for a sequence $\left\{a_{k}\right\}$. For each \underline{k}, c_{k} is one of the divisors of a_{k}. Then,

$$
\lim \left|f\left(c_{k}\right)\right|^{\frac{1}{c_{k}}} \leq \sup L_{i}<\infty
$$

and over all sequences $\left\{a_{k}\right\}$ the $\left\{c_{k}\right\}$ are bounded by:

$$
\sup _{\left\{\mathrm{a}_{\mathrm{k}}\right\}} \lim \left|\mathrm{f}\left(\mathrm{c}_{\mathrm{k}}\right)\right|^{\frac{1}{c_{k}}} \leq \sup L_{\mathrm{i}}<\infty
$$

That is,

$$
\sup _{\left\{a_{k}\right\}} \lim \left[\max _{d\left|a_{k}\right| f(d) \mid}\right]^{\frac{1}{c_{k}}} \leq \sup L_{i}
$$

Now

$$
\left[\max _{d \mid a_{k}}|f(d)|\right]^{\frac{1}{a_{k}}} \leq\left[\max _{d \mid a_{k}}|f(d)|\right]^{\frac{1}{c_{k}}}
$$

So:

$$
\sup _{\left\{a_{k}\right\}} \lim \left[\max _{d \mid a_{k}}|f(d)|\right]^{\frac{1}{a_{k}}} \leq \sup L_{i}<\infty .
$$

That is,

$$
\lim \sup \max _{\mathrm{d} \mid \mathrm{n}}|\mathrm{f}(\mathrm{~d})|^{\frac{1}{\mathrm{n}}} \leq \sup L_{\mathrm{i}}<\infty
$$

Now, we demonstrate below that

$$
\left|\sum \tau(\mathrm{n}) \mathrm{x}^{\mathrm{n}}\right|<\infty
$$

on some interval about 0 , where τ is the number-of-divisors function. The demonstration below is valid but clearly circuitous. Thus,

$$
\begin{aligned}
& \text { s. Thus, } \\
& \lim \sup |\tau(\mathrm{n})|^{\frac{1}{\mathrm{n}}}<\infty
\end{aligned}
$$

by the root test, and

$$
\begin{aligned}
\lim \sup \left[\tau(n) \max _{d \mid n}|f(d)|\right]^{\frac{1}{n}} & =\lim \sup |\tau(n)|^{\frac{1}{n}}\left[\max _{d \mid n}|f(d)|\right]^{-\frac{1}{n}} \\
& \leq \lim \sup |\tau(n)|^{\frac{1}{n}} \lim \sup \left[\max _{d \mid n}|f(d)|\right]^{\frac{1}{n}}<\infty
\end{aligned}
$$

Thus,

$$
\sum_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \tau(\mathrm{n}) \max _{\mathrm{d} \mid \mathrm{n}}|\mathrm{f}(\mathrm{~d})|<\infty
$$

on some interval about 0 . Then,

$$
\begin{aligned}
\left|\sum F(n) x^{n}\right| & \leq \sum|F(n)| x^{n} \leq \sum \sum_{d \mid n}|f(d)| x^{n} \\
& \leq \sum \tau(n) \max _{d \mid n}|f(d)| x^{n}<\infty
\end{aligned}
$$

q.e.d.

We repair the gap in the proof of Proposition 2, the assertion without demonstration that

$$
\sum \tau(\mathrm{n}) \mathrm{x}^{\mathrm{n}}
$$

converges on some interval about 0 , by comparing this sum with another. The result is obvious on comparing $\tau(\mathrm{n})$ with the identity function:

$$
\left|\sum n x^{n}\right|<\infty
$$

on $(-1,1)$.
One more proposition is needed to finish the background for a demonstration that Proposition 1 applies to \mathscr{G}_{α}.

Proposition 3:

$$
\sum 1 / n F(n) x^{n}
$$

converges on some interval about 0 iff

$$
\sum F(n) x^{n}
$$

converges on some interval about 0 .
Proof. Under the hypothesis that

$$
\sum 1 / n F(n) x^{n}
$$

converges we have by the root test:

$$
\lim \sup |F(n)(1 / n)|^{\frac{1}{n}}<\infty
$$

That is,

$$
\sup _{\left\{a_{k}\right\}} \lim \left|F\left(a_{k}\right)\left(1 / a_{k}\right)\right|^{\frac{1}{a_{k}}}<\infty .
$$

Now, clearly when

$$
\left|F\left(a_{k}\right)\left(1 / a_{k}\right)\right|^{\frac{1}{a_{k}}}
$$

converges, its limit is

$$
\lim \left|F\left(a_{k}\right)\right|^{\frac{1}{a_{k}}}
$$

Also, it is clear that

$$
\left|F\left(a_{k}\right)\right|^{\frac{1}{a_{k}}}
$$

converges if and only if

$$
\left|F\left(a_{k}\right)\left(1 / a_{k}\right)\right|^{\frac{1}{a_{k}}}
$$

too, converges. So

$$
\begin{aligned}
\lim \sup |F(n)|^{\frac{1}{n}} & =\sup _{\left\{a_{k}\right\}}^{\lim \left|F\left(a_{k}\right)\right|^{\frac{1}{a_{k}}}=\sup _{\left\{a_{k}\right\}} \lim \left|F\left(a_{k}\right)\left(1 / a_{k}\right)\right|^{\frac{1}{a_{k}}}} \\
& =\lim \sup |F(n)(1 / n)|^{\frac{1}{n}}
\end{aligned}
$$

$$
\sum F(n) x^{n}
$$

converges on some interval about 0 . The other direction is similar, or by comparison, q.e.d.

Now we prove that Proposition 1 may be applied to \mathscr{C}_{α}.
Proposition 4.

$$
\sum \mathscr{G}_{\alpha}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}
$$

converges on some interval about 0 .
Proof. $\sum \mathrm{x}^{\mathrm{n}}$ converges on $[0,1)$. Apply Proposition 3 inductively: for each α,

$$
\sum \mathrm{n}^{\alpha} \mathrm{x}^{\mathrm{n}}
$$

converges on some interval. Then, by Proposition 2,

$$
\sum \mathscr{G}_{\alpha}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}
$$

converges. q.e.d. Proposition 1 now yields a recursive relation on \mathscr{C}_{α} in terms of the coefficients of the power series for $P(x)$ with $f(n)=n^{\alpha} . P(x)$ is an infinite product and, in order to determine an expression for \mathscr{C}_{α} which is recursive in addition and multiplication, we express the coefficients of the power series for $P(x)$ as the coefficients of the expansion of a finite product.

Proposition 5.

$$
0=\mathrm{nR}(\mathrm{n})+\sum_{\mathrm{a}=1}^{\mathrm{n}} \mathscr{G}_{\alpha}(\mathrm{a}) \mathrm{R}(\mathrm{n}-\mathrm{a})
$$

where $R(k)=$ coefficient of x^{k} in

$$
\prod_{n=1}^{\mathrm{k}}\left(1-\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{n}^{\alpha-1}}
$$

Proof. Applying Proposition 1, to

$$
\prod_{n=1}^{\infty}\left(1-\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{n}^{\alpha-1}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{S}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}:
$$

Let

$$
\prod_{1}^{\mathrm{k}}\left(1-\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{n}^{\alpha-1}}=\sum_{\mathrm{n}} \overline{\mathrm{R}}_{\mathrm{k}}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}
$$

(Definition). Then

$$
\begin{aligned}
\sum_{\mathrm{n}} \overline{\mathrm{R}}_{\mathrm{k}+1}(\mathrm{n}) \mathrm{x}^{\mathrm{n}} & =\prod_{\mathrm{n}=1}^{\mathrm{k}+1}\left(1-\mathrm{x}^{\mathrm{n}}\right)^{\mathrm{n}^{\alpha-1}}=\left(1-\mathrm{x}^{\mathrm{k}+1}\right)^{[\mathrm{k}+1]^{\alpha-1}} \mathrm{x} \sum_{\mathrm{n}} \overline{\mathrm{R}}_{\mathrm{k}}(\mathrm{n}) \mathrm{x}^{\mathrm{n}} \\
& =\sum_{\mathrm{r}=0}^{[\mathrm{k}+1]^{\alpha-1}}\binom{[\mathrm{k}+1]^{\alpha-1}}{\mathrm{r}}(-1)^{\mathrm{r}} \mathrm{x}^{(\mathrm{k}+1) \mathrm{r}_{\mathrm{x}} \sum_{\mathrm{n}} \overline{\mathrm{R}}_{\mathrm{k}}(\mathrm{n}) \mathrm{x}^{\mathrm{n}}=}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n} \bar{R}_{k}(n) x^{n}+\sum_{r=1}^{[k+1]^{\alpha-1}}\binom{[k+1]^{\alpha-1}}{r}(-1)^{r} x^{(k+1) r} x \sum_{n} \bar{R}_{k}(n) x^{n} \\
& =\sum_{n} \bar{R}_{k+1}(n) x^{n} .
\end{aligned}
$$

None of the terms in the second summand have exponents $\leq k$. Thus

$$
\overline{\mathrm{R}}_{\mathrm{k}}(\mathrm{i})=\overline{\mathrm{R}}_{\mathrm{k}+1}(\mathrm{i})
$$

for all $i \leq k$. Indeed, $\bar{R}_{k}(i)=\bar{R}_{1}(i)$ for all i and 1 such that $i \leq k \leq 1$. Thus

$$
\sum S(n) x^{n}=\lim _{k} \prod_{1}^{k}\left(1-x^{n}\right)^{n^{\alpha-1}}=\lim _{k} \sum_{n} \bar{R}_{k}(n) x^{n}=\sum_{n} \lim _{k} \bar{R}_{k}(n) x^{n}=\sum_{n} \bar{R}_{n}(n) x^{n}
$$

and $\bar{R}_{n}(n)=S(n)$. q.e.d.
It is now possible to define a function, which turns out to be \mathscr{G}_{α}, which is expressible in terms of just addition and multiplication, and which leads to the equation mentioned in the title.

Define $F_{\alpha}(1)=1$ and, supposing F_{α} defined on $1,2, \cdots, n-1$, let $F_{\alpha}(n)$ satisfy

$$
0=n R(\mathrm{n})+\sum_{\mathrm{a}=1}^{\mathrm{n}} \mathrm{~F}_{\alpha}(\mathrm{a}) \mathrm{R}(\mathrm{n}-\mathrm{a})
$$

where R is defined as in the statement of Proposition 5. Then, by Proposition 5, $\mathrm{F}_{\alpha}=\mathscr{C}_{\alpha}$, and F_{α} satisfies $0=\mathrm{F}_{\alpha}(\mathrm{n})-\mathrm{n}^{\alpha}-1$ just when $\underline{\mathrm{n}}$ is a prime number.

REFERENCE

1. Euler, Opera Omnia, Series 1, Vol. 2, pp. 241-253, "Discovery of a Most Extraordinary Law of the Numbers Concerning the Sum of Their Divisors,"
