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1. In this ar t ic le , a generalized form of Euler f s law concerning the sigma function will 
tained and used to derive expressions for ^ which contain ju 

addition and multiplication. These will be substituted in the equations 
be obtained and used to derive expressions for T% which contain just functions involving 

(1) <§^(n) - na - 1 = 0 

to obtain equations with classes of solutions identical with the class of prime numbers. 
2. Let 

F<n> = Sf ( d ) 
d|n 

Proposition 1. If 

D Ftn) xn 

n=l 

converges on some interval about 0, then 

n 
(2) 0 = nR(n) + V F(a)E(n - a) 

a=l 

where 

_ ^ °° f(n)/n 
(3) 2 ^ E(n)xn = II (1 - xn) 

n=0 n = 1 

The proof mimics Eule r ' s for the case f = identity, which is the recursive expression 
for sum of divisors he obtained by describing E. [l] 
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Proof. 

J^ f (n)xn / ( l - x n ) = £ f ( n ) 2] x 

n=l n k 

nk 

f(l)x + f(l)x2 + f(l)x3 + f(l)x4 + f (l)x5 + f(l)x6 + . . . 

+ f (2)x2 + f (2)x* + f (2)x6 + . . . 

+ f (3)x3 + f (3)x6 + . . . 

+ f (4) x4 + • • • 

+ f(5)x5 + • • • 

+ f (6)x6 + . . . 

OO OO 

= X > n £ f ( d ) = £ F(n)xn . 
n=l d n n=l 

That i s , 

(4) J ] f (n)x n / ( l - x n ) = Yl FWx 1 1 . 
n=l n=l 

Suppose 

f(n)/n 
(5) o < n ( i - x

n ) < «> 

on some interval about 0. We show that (2) holds under (5) and then that (5) holds when 

n=l 

converges on some interval about 0. 
Let (5) hold. We have the identity: 

00 f(n)/n 
log n (1 - x n ) = J2 f(n)/nlog (1 - x n ) 

n=l x 

Differentiating, and substituting from (3) as (5) permits : 
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E-WVtt-^) =_L1 
sf?(i - - f(n)/n 

n (1 - x11) 
1 

TCJ75T 

^E»tm)^)/EBto)^ 

2 mRdnJx111"1/ ^ R(m)xm . 
0 0 

Hence, by (4), 

( 6 ) " 2 m R ( m > x m / £ R ( m ) x m = 2 « n ) x n / (1 - x n ) = J^ F(n)x 
0 0 1 1 

and Eq. (6) gives: 

= I 2 F(n)xJ1 J{ 2 R ( m ) x m J + 2 ^w^ 

So, for each n > 0, the coefficient x is 0: 

0 = 2 F ( a > R ( n - a) + nR<n) 
a=l 

It remains to show that (5) holds when 

OO 

2F(n) *n 

n=l 

converges on some interval about 0. By Eq. (6), 

E F(n)xn = -xd/dx log P(x) 
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where 

Therefore, 

(7) 

Hence P(x) = 0 iff 

iff 

P(x) = n (l . x11) 
1 

f(n)/n 

P(x) = exp 

OO 

f - E FdDx11"1 

J x 
dx . 

n - 1 , I E F(n)xn~\lx = <*> 
•* 1 

F(n)x 

and P(x) =oo iff 

Thus (5) holds iff 

E (l/n)F(n)xn = -oo . 
1 

E (l/n)F(n)xn 

1 

on some interval about 0, and this is the case when 

E F(n)xn 

1 

< oo 

on the same interval. Q .E .D. 
Now it is necessary to show that the conditions of Proposition 1 apply to ^ . Actually, 

we show a little more. 
Proposition 2. Let 

E f(d) = F(n) 
d |n 

Then, 

| E F ( n ) x n | < -
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on some interval about 0 if and only if 

E f ( n ) x n | < -

on some interval about 0. 
Proof. 

| 5 > ( n ) x n | < - - » | ^ f ( n ) x n / l - x n | < - - * | ^ f ( n ) x n | < 

by (4) and comparison. For the other direction, let 

By the root test , 

I E fWx11 | < °° 

lim sup |f(n) | < 

That i s , sup L. < °° , where 

on some sequence {a., }. 
Define {c, } by: 

L. = lim |f(a ) | 
k 

aik 

|f(c ) | = max |f(d)| 

for a sequence {a, }. For each k, c, is one of the divisors of a, . Thenf 

l im f(c, ) < sup L < oo, 

and over all sequences {a, } the {c, } a re bounded by: 

sup lim f(c. ) < sup L. < °° 
{ a k } k ' 

That i s , 

sup lim max |f(d) 
dla, 

< sup L. . 
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Now 
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max f(d) 
d a , 

So: 

sup Hm 
{ a k } 

max I f (d) J 
d ! \ 

max |f(d)| 
dla, 

^ sup L. < °° 

That i s , 

l im sup max |f(d)| < sup L. < °°. 
d |n * 

Now, we demonstrate below that 

| X > ( n ) x n | < °° 

on some interval about 0, where T is the number-of-divisors function. The demonstration 
below is valid but clearly circuitous. Thus, n 

lim sup T(n) < °° 

by the root test , and 

lim 

Thus, 

sup |~T(n) max | f ( d ) | ] n = lim sup | r ( n ) | n [ m a x |f(d) | l n 

L 4 n J Ld|n J 
1 1 

[ m a x | f ( d ) | 1 n 

Ld|n J 
< lim sup T(n) lim sup 

2 > n T ( n ) max |f(d)| < °° 
n d n 

< OO 

on some interval about 0. Then, 

| 5 > ( n ) x n | < j ^ |F (n ) |x n < E E |f(d) |xn 

djn 

< E T W max | f (d ) |x n < °o 
din 

q. e .d. 
We repair the gap in the proof of Proposition 2, the assertion without demonstration that 

E r ( n ) x n 

converges on some interval about 0, by comparing this sum with another. The result is 
obvious on comparing T(n) with the identity function: 
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IE**111 < °° 
on (-1,1). 

One more proposition is needed to finish the background for a demonstration that Prop-
osition 1 applies to 9/ . 

Proposition 3: 

J ] l / n F(n)xn 

converges on some interval about 0 iff 

^ F ( n ) x n 

converges on some interval about 0. 
Proof. Under the hypothesis that 

X ; i / n F ( n ) x n 

converges we have by the root test: 
1. 

lim sup | F ( n ) ( l / n ) | n < » . 

That i s , 

Now, clearly when 

a, 
sup lim | F ( a k ) ( l / a k ) | < <*> . 

| F ( a k ) ( l / a k ) | k 

converges, its limit is -

Also, it is clear that 

converges if and only if 

too 5 convergese So 

a, 
lim | F ( a k ) | K 

a. 
| F ( a k ) | k 

| F ( a k ) ( l / a k ) ) a k 

1 1 1 
— a, a, 

lim sup j F(n) | n = sup lim | F(afe) | = sup lim | F (a- M l / a , ) | 

= lim sup F(n)(l/n) 
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So X>(n ) x n 

converges on some interval about 0. The other direction is s imilar , or by comparison, 
q. e.d. 

Now we prove that Proposition 1 may be applied to CZ^. 
Proposition 4. 

converges on some interval about 0. 
Proof, y^x converges on [0,1). Apply Proposition 3 inductively: for each a, 

E a n n x 

converges on some interval. Then., by Proposition 2, 

E CZP i \ n 
1fa

(n) x 

converges, q. e.d. Propos i t ion! now yields a recursive relation on ^ in te rms of the co-
ex. efficients of the power ser ies for P(x) with f(n) = n . P(x) is an infinite product and, in 

order to determine an expression for ^ which is recursive in addition and multiplication, 
we express the coefficients of the power ser ies for P(x) as the coefficients of the expansion 
of a finite product. 

Proposition 5. 
n 

0 = nR(n) + £ ^ ( a ) R ( n - a) , 

where R(k) = coefficient of x in 

a=l 

k n 
n (i - x

n ) 
n=l 

Proof. Applying Proposition 1, to 
a-l 

n 

Let 

(Definition). Then 

n (i - x
n ) = £ SW*11 

n=l n=0 

k n*'1 

n (i - xn) = E Rk(n)xn 

1 n 

k+1 n , - Lk+lJ 
5 3 \ + 1 ( n ) x n = n (1 - x n ) = (1 - x K + 1 ) x £ Rk(n)xn 

n n=l n 

E ] 7 [ k +
r

l ] a _ 1 ) ( - l ) r x ( k + 1 ) r x E \ ( n ) x n 

r=0 \ r / n 
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= E Rk(n)x* +
 [ k + ^ _ 1 ( fk + I]""1 ) ( -D 'x^ 'x E Hk(n)xn 

n r=l > ' n 

= E W)** • 
n 

None of the te rms in the second summand have exponents ^k. Thus 
Rk(D = Rk + 1(D 

for all i ^ k„ Indeed, R*k(i) = R^i) for all i and 1 such that i < k < 1. Thus 

k n 
E s ( n ) x n = lim n (1 - x11) = lim V R, (n)xn = T lim R, (n)xn = E B Wx1 1, 

k l k V k n k R n n 

and R: (n) = S(n), q . e .d . 

It is now possible to define a function, which turns out to be ^ , which is expressible in 
terms of just addition and multiplication, and which leads to the equation mentioned in the 
title. 

Define F (1) = 1 and, supposing F defined on 1, 2, o e o , n - l f let F (n) satisfy 

n 
0 = nR(n) + ] P F (a)R(n - a) , 

a=l 

where R is defined as in the statement of Proposition 5. Then, by Proposition 5, F = ^ 9 
a and F satisfies 0 = F (n) - n - 1 just when n is a prime number. 
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