4. George E. Andrews, "Sieves for Theorems of Euler, Rogers and Ramanujan, from the Theory of Arithmetic Functions," Lecture Notes in Mathematics, No. 251, Springer, New York, 1971.
5. George E. Andrews, "Sieves in the Theory of Partitions," Amer. J. Math. (to appear).
6. C. Berge, Principles of Combinatories, Academic Press, New York, 1971.
7. Leonard Carlitz, Solution to Advanced Problem H-138, Fibonacci Quarterly, Vol. 8, No. 1 (February 1970), pp. 76-81.
8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford University Press, Oxford, 1960.
9. V. E. Hoggatt, Jr., and Joseph Arkin, "A Bouquet of Convolutions," Proceedings of the Washington State University Conf. on Number Theory, March 1971, pp. 68-79.
10. John E. and Margaret W. Maxfield, Discovering Number Theory, W. B. Saunders, Philadelphia, 1972.
11. I. J. Schur, "Ein Beitrag zur additiven Zahlentheorie, Sitzungsber," Akad. Wissensch. Berlin, Phys. -Math. Klasse (1917), pp. 302-321.
12. N. N. Vorobyov, The Fibonacci Numbers, D. C. Heath, Boston, 1963.

FIBONACCI SUMMATIONS INVOLVING A POWER OF A RATIONAL NUMBER
 SUMMARY

BROTHER ALFRED BROUSSEAU
St. Mary's College, Moraga, California 94575

The formulas pertain to generalized Fibonacci numbers with given T_{1} and T_{2} and with

$$
\begin{equation*}
T_{n+1}=T_{n}+T_{n-1} \tag{1}
\end{equation*}
$$

and with generalized Lucas numbers defined by

$$
\begin{equation*}
V_{n}=T_{n+1}+T_{n-1} . \tag{2}
\end{equation*}
$$

Starting with a finite difference relation such as

$$
\begin{equation*}
\Delta(\mathrm{b} / \mathrm{a})^{\mathrm{k}} \mathrm{~T}_{2 \mathrm{k}} \mathrm{~T}_{2 \mathrm{k}+2}=\left(\mathrm{b}^{\mathrm{k}} / \mathrm{a}^{\mathrm{k}+1}\right) \mathrm{T}_{2 \mathrm{k}+2}\left(\mathrm{bT}_{2 \mathrm{k}+4}-\mathrm{a}_{2 \mathrm{k}}\right) \tag{3}
\end{equation*}
$$

values of b and a are selected which lead to a single generalized Fibonacci or Lucas number for the term in parentheses. Thus for $b=2, a=13$, the quantity in parentheses is $3 \mathrm{~T}_{2 \mathrm{k}-3}$. Using the finite difference approach leads to a formula

$$
\begin{equation*}
\sum_{\mathrm{k}=1}^{\mathrm{n}}(2 / 13)^{\mathrm{k}} \mathrm{~T}_{2 \mathrm{k}} \mathrm{~T}_{2 \mathrm{k}+5}=(1 / 3)\left[\left(2^{\mathrm{n}+1} / 13^{\mathrm{n}}\right) \mathrm{T}_{2 \mathrm{n}+5} \mathrm{~T}_{2 \mathrm{n}+7}-2 \mathrm{~T}_{5} \mathrm{~T}_{7}\right] \tag{4}
\end{equation*}
$$

Formulas are also developed with terms in the denominator.

