ALGORITHMS FOR THIRD - ORDER RECURSION SEQUENCES

BROTHER ALFRED BROUSSEAU
St. Mary's College, Moraga, California 94575

Given a third-order recursion relation
(1)

$$
\mathrm{T}_{\mathrm{n}+1}=\mathrm{a}_{1} \mathrm{~T}_{\mathrm{n}}-\mathrm{a}_{2} \mathrm{~T}_{\mathrm{n}-1}+\mathrm{a}_{3} \mathrm{~T}_{\mathrm{n}}
$$

Let the auxiliary equation

$$
\begin{equation*}
x^{3}-a_{1} x^{2}+a_{2} x-a_{3}=0 \tag{2}
\end{equation*}
$$

have three distinct roots r_{1}, r_{2}, r_{3}. Then any term of a sequence governed by this recursion relation can be expressed in the form

$$
\begin{gather*}
\mathrm{T}_{\mathrm{n}}=\mathrm{A}_{1} \mathrm{r}_{1}^{\mathrm{n}}+\mathrm{A}_{2} \mathrm{r}_{2}^{\mathrm{n}}+\mathrm{A}_{3} \mathrm{r}_{3}^{\mathrm{n}} \tag{3}\\
\text { THE SEQUENCE } \mathrm{S}_{\mathrm{n}}=\sum \mathrm{r}_{\mathrm{i}}^{\mathrm{n}}
\end{gather*}
$$

Since the individual elements of these sums are powers of the roots, the sums obey the given recursion relation. Hence it is possible to determine a few terms of S_{n} by means of symmetric functions and thereafter generate additional terms of the S sequence. Since this sequence is basic to all the algorithms, its generation constitutes the first algorithm. (Note. This use of the S sequence is exemplified in [1].)

ALGORITHM FOR FINDING THE TERMS OF S_{n}

Three consecutive terms of the sequence are:
(4)

$$
\left\{\begin{array}{l}
S_{1}=a_{1} \\
S_{2}=a_{1}^{2}-2 a_{2} \\
S_{3}=a_{1}^{3}-3 a_{1} a_{2}+3 a_{3}
\end{array}\right.
$$

Then use the recursion relation to obtain positive and negative subscript terms of the sequence.
The algorithm will be illustrated for two recursion relations which will be used to check other algorithms numerically.

EXAMPLE 1: $x^{3}-x^{2}-x-1=0$

n	S_{n}								
-30	-14429	-18	47	-6	11	6	39	18	58035
-29	13223	-17	271	-5	-1	7	71	19	106743
-28	-3253	-16	-253	-4	-5	8	131	20	196331
-27	-4459	-15	65	-3	5	9	241	21	361109
-26	5511	-14	83	-2	-1	10	443	22	664183
-25	-2201	-13	-105	-1	-1	11	815	23	1221623
-24	-1149	12	43	0	3	12	1499	24	2246915
-23	2161	-11	21	1	1	13	2757	25	4132721
-22	-1189	-10	-41	2	3	14	5071	26	7601259
-21	-177	-9	23	3	7	15	9327	27	13980895
-20	795	-8	3	4	11	16	17155	28	25714875
-19	-571	-7	-15	5	21	17	31553	29	47297029
								30	86992799

EXAMPLE 2: $x^{3}-7 x^{2}+5 x+4=0$

n	$\mathrm{~S}_{\mathrm{n}}(-4)^{\mathrm{n}}$		
-23	2450995949	6004997927	85
-22	2879858678	8067714806	5
-21	3383761613	1827843249	
-20	3975834906	620902593	
-19	4671506147	59541201	
-18	5488902409	1011041	
-17	6449322392	180465	
-16	7577792077	14561	
-15	8903714463	1313	
-14	1046164399	5681	
-13	1229215792	433	
-12	1444301540	49	
-11	1697004500	9	
-10	1993985121		
-9	234271601		
-8	27532161		
-7	3232913		
-6	380577		
-5	44465		
-4	5313		
-3	593		
-2	81		
-1	5		

n	S_{n}	
0	3	
1	7	
2	39	
3	226	
4	1359	
5	8227	
6	49890	
7	302659	
8	1836255	
9	11140930	
10	67594599	
11	410112523	
12	2488250946	
13	15096815611	
14	91596004455	
15	555734949346	
16	3371777360703	
17	20457382760371	
18	124119852721698	
19	753064945807219	
20	4569025826000559	
21	27721376642081026	
22	168192247581335511	
23	1020462746554941211	
24	6191392481409586818	
25	37564664646767059627	
26	22791383913410171845	5
27	13828079807792383837	78

RECURSION RELATIONS FOR SPACED TERMS OF A SEQUENCE

Given a sequence T_{n} satisfying the given recursion relation. It is desired to find the recursion relation for a spacing of k among the terms, namely, for the sequence $T_{n k+a^{*}}$
(5)
Since

$$
\mathrm{T}_{\mathrm{nk}+\mathrm{a}}=\mathrm{A}_{1} \mathrm{r}_{1}^{\mathrm{nk}+\mathrm{a}}+\mathrm{A}_{2} \mathrm{r}_{2}^{\mathrm{nk}+\mathrm{a}}+\mathrm{A}_{3} \mathrm{r}_{3}^{\mathrm{nk}+\mathrm{a}}
$$

and since there is a change of r_{i}^{k} from one term to the next, the recursion relation is that whose roots correspond to r_{i}^{k}. Let the coefficients be given in the relation

$$
\mathrm{x}^{3}-\mathrm{B}_{1} \mathrm{x}^{2}+\mathrm{B}_{2} \mathrm{x}-\mathrm{B}_{3}=0
$$

Then

$$
\begin{gathered}
\mathrm{B}_{1}=\sum \mathrm{r}_{\mathrm{i}}^{\mathrm{k}}=\mathrm{S}_{\mathrm{k}} \\
\mathrm{~B}_{2}=\sum \mathrm{r}_{\mathrm{i}}^{\mathrm{k}} \mathrm{r}_{\mathrm{j}}^{\mathrm{k}}=\mathrm{a}_{3}^{\mathrm{k}} \sum \mathrm{r}_{\mathrm{i}}^{-\mathrm{k}}=\mathrm{a}_{3}^{\mathrm{k}} \mathrm{~S}_{-\mathrm{k}} \\
\mathrm{~B}_{3}=\mathrm{a}_{3}^{\mathrm{k}}
\end{gathered}
$$

Hence the recursion relation is given by
(6)

$$
x^{3}-S_{k} x^{2}+a_{3}^{k} S_{-k}-a_{3}^{k}=0
$$

EXAMPLE FOR $x^{3}-x^{2}-\mathrm{x}-1=0$ with $\mathrm{k}=5$.

$$
\mathrm{T}_{\mathrm{n}+5}=21 \mathrm{~T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{n}-5}+\mathrm{T}_{\mathrm{n}-10}
$$

Using the sequence S_{n} with $\mathrm{n}=20$,

$$
\mathrm{T}_{25}=21 * 196331+9327+443=4132721
$$

EXAMPLE FOR $x^{3}-7 x^{2}+5 x+4=0$ using the terms of the S sequence.

$$
\begin{gathered}
\mathrm{T}_{-5}=\left(-593 \mathrm{~T}_{-2}+226 \mathrm{~T}_{1}-\mathrm{T}_{4}\right) / 64 \\
\mathrm{~T}_{-5}=(-593 * 81 / 16+226 * 7-1359) / 64=-44465 / 1024
\end{gathered}
$$

SECOND-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

If there are several sequences satisfying the given recursion relation, a sum of terms of the form $\mathrm{T}_{\mathrm{m}_{1}}^{(1)} \mathrm{T}_{\mathrm{m}_{2}}^{(2)}$ would form a homogeneous sequence function of the second degree. Such terms if expanded using the roots of the auxiliary equation would yield terms of the form $B_{i} r_{i}^{m_{1}+m_{2}}$ and others of the form $C_{i j} r_{i}^{m_{1}} r_{j} m_{2}$. The first type obey the recursion relation for r_{i}^{2} since there is a change of 2 in the power in going from one term in the product to the next as the m's change by 1 . The second type obey the recursion relation for the quantities $r_{i}{ }^{\mathrm{j}} \mathrm{j}$.

ALGORITHM FOR THE SECOND-DEGREE FUNCTIONS
The recursion relation governing the quantities r_{i}^{2} has already been obtained and is given by:

$$
\begin{equation*}
x^{3}-S_{2} x^{2}+a_{3}^{2} S_{-2} x-a_{3}^{2}=0 \tag{7}
\end{equation*}
$$

For the second we need to find the symmetric functions of the roots $r_{i} r_{j}$.

$$
\begin{aligned}
\mathrm{B}_{1}=\sum \mathrm{r}_{\mathrm{i}} \mathrm{r}_{\mathrm{j}} & =\mathrm{a}_{2} \\
\mathrm{~B}_{2}=\sum \mathrm{r}_{\mathrm{i}}^{2} \mathrm{r}_{\mathrm{j}} \mathrm{r}_{\mathrm{k}} & =\mathrm{a}_{3} \mathrm{a}_{1} \\
\mathrm{~B}_{3}=\mathrm{r}_{\mathrm{i}}^{2} \mathrm{r}_{\mathrm{j}}^{2} \mathrm{r}_{\mathrm{k}}^{2} & =\mathrm{a}_{3}^{2}
\end{aligned}
$$

Hence the recursion relation is

$$
\begin{equation*}
x^{3}-a_{2} x^{2}+a_{3} a_{1} x-a_{3}^{2}=0 \tag{8}
\end{equation*}
$$

The total recursion relation is the product of (7) and (8):

$$
\begin{equation*}
\left(x^{3}-S_{2} x^{2}+a_{3}^{2} S_{-2} x-a_{3}^{2}\right)\left(x^{3}-a_{2} x^{2}+a_{3} a_{1} x-a_{3}^{2}\right)=0 . \tag{9}
\end{equation*}
$$

EXAMPLE FOR $x^{3}-7 x^{2}+5 x+4=0$.

$$
\begin{aligned}
\mathrm{S}_{5}^{2} & =44 \mathrm{~S}_{4}^{2}-248 \mathrm{~S}_{3}^{2}-655 \mathrm{~S}_{2}^{2}+1564 \mathrm{~S}_{1}^{2}+848 \mathrm{~S}_{0}^{2}-256 \mathrm{~S}_{-1}^{2} \\
& =44^{*} 1359^{2}-248 * 226^{2}-655 * 39^{2}+1564 * 7^{2}+848 * 3^{2}+256 *(5 / 4)^{2} \\
& =67683529=8227^{2}
\end{aligned}
$$

THIRD-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

An expression of the form

$$
\mathrm{T}_{\mathrm{m}_{1}}^{(1)} \mathrm{T}_{\mathrm{m}_{2}}^{(2)} \mathrm{T}_{\mathrm{m}_{3}}^{(3)}
$$

gives rise to terms of the form

$$
r_{i}^{m_{1}+m_{2}}, \quad r_{i}^{m_{1}+m_{2}} r_{j}^{m_{3}}, \quad r_{i}^{m_{1}} r_{j}^{m_{2}} r_{k}^{m_{3}}
$$

The first type corresponds to the recursion relation for r_{i}^{3}, the second to the recursion relation for $r_{i}^{2} r_{j}$, and the third to the recursion relation for a_{3}. The first relation is:

$$
\begin{equation*}
x^{3}-S_{3} x^{2}+a_{3}^{3} S_{-3} x-a_{3}^{3}=0 \tag{10}
\end{equation*}
$$

The last relation is:

$$
\begin{equation*}
x-a_{3}=0 \tag{11}
\end{equation*}
$$

For the second we have a relation of the sixth degree with coefficients symmetric functions of the roots
$R_{1}=r_{1}^{2} r_{2}, \quad R_{2}=r_{2}^{2} r_{1}, \quad R_{3}=r_{1}^{2} r_{3}, \quad R_{4}=r_{3}^{2} r_{1}, \quad R_{5}=r_{2}^{2} r_{3}, \quad R_{6}=r_{3}^{2} r_{2}$.

$$
\mathrm{B}_{1}=\sum \mathrm{R}_{\mathrm{i}}=(21)=-3 \mathrm{a}_{3}+\mathrm{a}_{2} \mathrm{a}_{1}
$$

where the notation (21) $=\sum r_{i}^{2} r_{j}$ taken as a symmetric function.

$$
\begin{gather*}
\mathrm{B}_{2}=\sum \mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}}=\left(41^{2}\right)+\left(3^{2}\right)+(321)+3(222) \\
\mathrm{B}_{2}=6 \mathrm{a}_{3}^{2}-5 a_{3} \mathrm{a}_{2} \mathrm{a}_{1}+\mathrm{a}_{3} \mathrm{a}_{1}^{3}+\mathrm{a}_{2}^{3} \\
\mathrm{~B}_{3}=\sum \mathrm{R}_{\mathrm{i}} \mathrm{R}_{\mathrm{j}} \mathrm{R}_{\mathrm{k}}=(531)+2(432)+2\left(3^{3}\right) \\
\mathrm{B}_{3}=-7 \mathrm{a}_{3}^{3}+6 \mathrm{a}_{3}^{2} \mathrm{a}_{2} \mathrm{a}_{1}-2 \mathrm{a}_{3}^{2} \mathrm{a}_{1}^{3}-2 \mathrm{a}_{3} \mathrm{a}_{2}^{3}+\mathrm{a}_{3} \mathrm{a}_{2}^{2} \mathrm{a}_{1}^{2} \\
\mathrm{~B}_{4}=\left(63^{2}\right)+\left(5^{2} 2\right)+(543)+3(444)=\mathrm{a}_{3}^{3}(3)+\mathrm{a}_{3}^{2}\left(3^{2}\right)+\mathrm{a}_{3}^{3}(21)+3\left(4^{3}\right) \tag{12}\\
\mathrm{B}_{4}=6 \mathrm{a}_{3}^{4}-5 \mathrm{a}_{3}^{3} \mathrm{a}_{2} \mathrm{a}_{1}+\mathrm{a}_{3}^{3} a_{1}^{3}+\mathrm{a}_{3}^{2} \mathrm{a}_{2}^{3} \\
\mathrm{~B}_{5}=(654)=\mathrm{a}_{3}^{4}(21)=-3 \mathrm{a}_{3}^{5}+\mathrm{a}_{3}^{4} a_{2} \mathrm{a}_{1} \\
\mathrm{~B}_{6}=\mathrm{a}_{3}^{6}
\end{gather*}
$$

The product of (10), (11) and the polynomial whose coefficients are given by (12) is the required recursion relation for the third degree. APPLIED TO $x^{3}-x^{2}-x-1=0$, we have

$$
\left(x^{3}-7 x^{2}+5 x-1\right)(x-1)\left(x^{6}+4 x^{5}+11 x^{4}+12 x^{3}+11 x^{2}+4 x+1\right)=0
$$

or

$$
x^{10}-4 x^{9}-9 x^{8}-34 x^{7}+24 x^{6}-2 x^{5}+40 x^{4}-14 x^{3}-x^{2}-2 x+1=0
$$

Starting with $\mathrm{S}_{9}=241$ we have:

$$
\begin{gathered}
4^{*} 241^{3}+9^{*} 131^{3}+34^{*} 71^{3}-24^{*} 39^{3}+2^{*} 21^{3}-40^{*} 11^{3}+14^{*} 7^{3}+3^{3}+2^{*} 1^{3}-3^{3} \\
= \\
86938307=443^{3} \cdot \mathrm{~S}_{10}^{3} .
\end{gathered}
$$

FOURTH-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS

We proceed as before but without going through the preliminary details we arrive at the conclusion that the symmetric functions of the roots are given by the partitions (4), (31), (22), (211) of four into three parts or less. We determine the recursion relations or equivalently the coefficients for each of these.
(4)
(13)

$$
x^{3}-S_{4} x^{2}+a_{3}^{4} S_{-4} x-a_{3}^{4}=0
$$

(211)

Since this symmetric function is equivalent to $a_{3} r_{i}$ in its terms, we have the relation

$$
\begin{equation*}
x^{3}-a_{3} a_{1} x^{2}+a_{3}^{2} a_{2} x-a_{3}^{4}=0 \tag{14}
\end{equation*}
$$

(31)

$$
\mathrm{A}_{1}=(31)=-\mathrm{a}_{3} \mathrm{a}_{1}-2 \mathrm{a}_{2}^{2}+\mathrm{a}_{2} \mathrm{a}_{1}^{2}
$$

$$
\begin{aligned}
\mathrm{A}_{2} & =(611)+(44)+(431)+(332) \\
& =a_{3}(5)+(44)+\mathrm{a}_{3}(32)+\mathrm{a}_{3}^{2} \mathrm{a}_{2} \\
\mathrm{~A}_{2}=-\mathrm{a}_{3}^{2} \mathrm{a}_{2} & +5 \mathrm{a}_{3}^{2} \mathrm{a}_{1}^{2}+2 \mathrm{a}_{3} \mathrm{a}_{2}^{2} \mathrm{a}_{1}-5 \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1}^{3}+\mathrm{a}_{3} \mathrm{a}_{1}^{5}+\mathrm{a}_{2}^{4} \\
\mathrm{~A}_{3} & =(741)+(642)+(543)+2(444) \\
& =\mathrm{a}_{3}(63)+\mathrm{a}_{3}^{2}(42)+\mathrm{a}_{3}^{3}(21)+2 \mathrm{a}_{3}^{4}
\end{aligned}
$$

$$
\begin{equation*}
A_{3}=2 a_{3}^{4}-13 a_{3}^{3} a_{2} a_{1}+a_{3}^{3} a_{1}^{3}+a_{3}^{2} a_{2}^{3}+10 a_{3}^{2} a_{2}^{2} a_{1}^{2}-3 a_{3}^{2} a_{2} a_{1}^{4} \tag{15}
\end{equation*}
$$

$$
-3 a_{3} a_{2}^{4} a_{1}+a_{3} a_{2}^{3} a_{1}^{3}
$$

$$
A_{4}=a_{3}^{2}\left(5^{2}\right)+a_{3}^{4}(4)+a_{3}^{4}(31)+a_{3}^{5}(1)
$$

$$
A_{4}=-a_{3}^{5} a_{1}+5 a_{3}^{4} a_{2}^{2}+2 a_{3}^{4} a_{2} a_{1}^{2}-5 a_{3}^{3} a_{2}^{3} a_{1}+a_{3}^{2} a_{2}^{5}+a_{3}^{4} a_{1}^{4}
$$

$$
A_{5}=a_{3}^{5}(32)=-a_{3}^{6} a_{2}-2 a_{3}^{6} a_{1}^{2}+a_{3}^{5} a_{2}^{2} a_{1}
$$

$$
\mathrm{A}_{6}=\mathrm{a}_{3}^{8}
$$

(22)

$$
\begin{gather*}
\mathrm{B}_{1}=\left(2^{2}\right)=-2 \mathrm{a}_{3} \mathrm{a}_{1}+\mathrm{a}_{2}^{2} \\
\mathrm{~B}_{2}=(422)=\mathrm{a}_{3}^{2}(2)=-2 \mathrm{a}_{3}^{2} \mathrm{a}_{2}+\mathrm{a}_{3}^{2} \mathrm{a}_{1}^{2} \tag{16}\\
\mathrm{~B}_{3}=\mathrm{a}_{3}^{4}
\end{gather*}
$$

The product of the polynomials given by (13), (14), (15), and (16) gives the required recursion relation for the fourth degree.

APPLICATION TO $x^{3}-x^{2}-x-1=0$.

$$
\begin{gathered}
\left(x^{3}-11 x^{2}-5 x-1\right)\left(x^{6}+4 x^{5}+15 x^{4}-24 x^{3}+7 x^{2}+1\right)\left(x^{3}+x^{2}+3 x-1\right) \\
\times\left(x^{3}-x^{2}-x-1\right)=0
\end{gathered}
$$

or

$$
\begin{aligned}
x^{15}-7 x^{14}-33 x^{13}-223 x^{12} & +197 x^{11}+41 x^{10}+1559 x^{9}-451 x^{8}-373 x^{7}-637 x^{6} \\
& +269 x^{5}+131 x^{4}+47 x^{3}-5 x^{2}-3 x-1=0
\end{aligned}
$$

REMARKS

The determination of the coefficients of the polynomials for higher degrees in terms of the coefficients of the original recursion relation leads to expressions of ever greater complexity which make calculations tedious and present a greater possibility of error. A simpler approach is to use symmetric functions of the roots which in turn can be calculated by means of the S sequence of the given recursion relation. For three roots all such symmetric functions can be reduced to one of the forms (ab), (a^{2}) or (a). The last is simply S_{a} while the others are given by:

$$
\begin{aligned}
& (a b)=S_{a} S_{b}-S_{a+b} \\
& \left(a^{2}\right)=\left(S_{a}^{2}-S_{2 a}\right) / 2
\end{aligned}
$$

FIFTH-DEGREE HOMOGENEOUS SEQUENCE FUNCTIONS
On the basis of partitions we consider symmetric functions of the roots of the forms (5), (41), (32), (311), (221).
(5)

$$
x^{3}-S_{5} x^{2}+a_{3}^{5} S_{-5} x-a_{3}^{5}
$$

(311)
(221)
(41)

$$
\begin{gathered}
\mathrm{D}_{2}=\left(81^{2}\right)+\left(5^{2}\right)+(541)+(442) \\
= \\
\mathrm{D}_{3}=(951)+(852)+(654)+2\left(5^{3}\right) \\
=a_{3}(84)+\mathrm{a}_{3}^{2}(63)+\mathrm{a}_{3}^{4}(43)+\mathrm{a}_{3}^{2}\left(2^{2}\right)+2 a_{3}^{5} \\
\mathrm{D}_{4}=(992)+(10,55)+(965)+(866) \\
= \\
a_{3}^{2}\left(7^{2}\right)+\mathrm{a}_{3}^{5}(5)+\mathrm{a}_{3}^{5}(41)+\mathrm{a}_{3}^{6}(2) \\
\mathrm{D}_{5}=(10,96)=a_{3}^{6}(43) \\
\mathrm{D}_{6}=\mathrm{a}_{3}^{10} \\
\mathrm{E}_{1}=(32)
\end{gathered}
$$

$$
\mathrm{E}_{2}=(622)+(55)+(532)+(433)
$$

$$
=a_{3}^{2}(4)+\left(5^{2}\right)+a_{3}^{2}(31)+a_{3}^{3} a_{1}
$$

$$
\mathrm{E}_{3}=(852)+(654)+2(555)+(753)
$$

$$
=a_{3}^{2}(63)+a_{3}^{4}(21)+2 a_{3}^{5}+a_{3}^{3}(42)
$$

$$
\mathrm{E}_{4}=(884)+(10,55)+(875)+(776)
$$

$$
=a_{3}^{4}\left(4^{2}\right)+a_{3}^{5}(5)+a_{3}^{5}(32)+a_{3}^{6} a_{2}
$$

$$
\mathrm{E}_{5}=(10,87)=\mathrm{a}_{3}^{7}(31)
$$

$$
E_{6}=a_{3}^{10}
$$

APPLICATION TO $x^{3}-x^{2}-x-1=0$.

$$
\begin{gathered}
\left(x^{3}-21 x^{2}-x-1\right)\left(x^{3}-3 x^{2}-x-1\right)\left(x^{3}+x^{2}+x-1\right)\left(x^{6}+0 x^{5}+7 x^{4}-24 x^{3}+15 x^{2}+4 x+1\right) \\
\times\left(x^{6}+10 x^{5}+75 x^{4}+28 x^{3}-x^{2}-6 x+1\right)=0
\end{gathered}
$$

The product is

$$
\begin{aligned}
& x^{21}-13 x^{20}-110 x^{19}-1374 x^{18} \pm 2425 x^{17}+543 x^{16}+60340 x^{15}-3976 x^{14} \\
&-43106 x^{13}-149310 x^{12}+137592 x^{11}+88200 x^{10}+63126 x^{9}-21742 x^{8}-13076 x^{7} \\
&- 8932 x^{6}+1041 x^{5}-37 x^{4}+150 x^{3}-10 x^{2}+x-1=0
\end{aligned}
$$

CONCLUDING NOTES

1. That the symmetric functions of the roots can always be expressed in terms of the quantities S_{n} is an elementary proposition in combinatorial analysis. (See [2; p. 7].)
2. For the $n^{\text {th }}$ degree, the recursion relation has degree

$$
\binom{n+2}{2}
$$

This follows from the fact that the number of terms involving the roots is equivalent to the solution of $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{n}$ in positive integers and zero.
3. For the sixth-degree relations, the coefficients A_{1} and A_{5}, A_{2} and A_{4}, are complementary, the respective quantities in the symmetric functions adding up to 2 n .
4. Each term in a coefficient has a weight. The coefficient A_{k} would have its terms of weight kn where n is the degree being considered for the terms of the original recursion relation. Thus for $\mathrm{n}=8, \mathrm{E}_{4}$ has a term $\mathrm{a}_{3}^{6}\left(7^{2}\right)$ which has a weight $6 \times 3+2 \times 7=32:=$ 4×8.
5. If $a_{3}=1$, all the factors for the $n^{\text {th }}$ degree are found for degree $n+3$.
6. With some modifications on the symmetric functions involved, this approach could be used to produce algorithms relating to recursion relations of higher order.
7. The algorithms were checked numerically by using a relation with roots 1,2 , and 4, finding the symmetric functions directly and comparing the result with that given by the algorithms.

REFERENCES

1. Trudy Y. H. Tong, "Some Properties of the Tribonacci Sequence and the Special Lucas Sequence," Master's Thesis, San Jose State University, August 1970.
2. P. A. MacMahon, Combinatory Analysis, Cambridge University Press, 1915, 1916. Reprinted by Chelsea Publishing Company, 1960.

Editor's Note: There are an additional twelve pages on this subject, going through the tenth degree. If you would like a Xerox copy of the additional material at four cents a page (which includes postage, materials and labor), send your request to:

Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575.

