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In [ l ] , we find three well known divisibility propert ies which exist between the Fibon-
acci and Lucas numbers. They are 

(1) F I F iff m = kn ; 
n I m 

(2) L I F iff m = 2kn, n > 1 ; 
n I m 

(3) L I L iff m = (2k - l)n, n > 1 . 
n ' m 

The pr imary intention of this paper is to investigate the decomposition of Fibonacci and 
Lucas numbers in that we are interested in finding n such that n |F or n|L . As a r e -
sult of this investigation, we will also il lustrate several interesting congruence relationships 
which exist between the elements of the sequences \ F } and (L } . 

The first result , due to Hoggatt, is 
Theorem 1. If n = 2-3k , k > 1, then n|L . 
Proof. Using a and /3 as the roots of the equation x2 - x - 1 = 0 and recalling that 

L = a + j3 , we have n r 

T 3n , 03n 
L3n = a +fi 

, n , „ n w 2n n 0 n , D2n^ = \a + jS )(a -aft + j3 ) 

= VL2n " (-1)n> = VL2n " » ' 

However, L2 = Lrt + 2 if n is even so that n 2n 

(4) L 3 n = Ln(L^ - 3) . 

The theorem is true if k = 1 because n = 6 and L6 = 18. The result now follows by 
induction on k together with (4). 

Curiosity leads one to ask if there are other sequences (nk) such that njLn k . The 
authors were unable to find other such sequences until they obtained the computer resul ts of 
Mr. Joseph Greener from which they were able to make several conjectures and establish 
several resul ts . Before stating the resul ts , we establish the following theorem which was 
discovered independently by Carlitz and Bergum. 
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Theorem 2. If p is an odd prime and p|L then p |L k_i > k ^. 1. 
Proof. By hypothesis, the theorem is true for k = 1. Assume p L ^ -i and let 

j _ i n p ^ " 1 

t = p then pt|L ,. We shall show that p2t|L ,. 
Using the factorization of x F + y , we have 

nt p nt p 

(5) L n p t = (ant) + dSnt) 

= L n t ( ^ 

The middle term of the summation is 

( 6 ) ( - 1 ) (p+3)/2 ( a j 3 )nt(p-l) /2 = ( - 1 ) (n+l ) (p- l ) /2 

The sum of the q and (p + 1 - q) t e rms , where q =J= (p + l ) / 2 , is 

(7) ^^q+ l^n t tp -q j^n t tq - l ) + ^ p - q ^ n t f a - l ^ n t f o - q ) 

= (-i)(l+1(Qf/3)nt((l-1)(Qfnt(p"2q+1) + j3nt(P-2<l+1)) 

= , v(n+l)(q-l)T 
l " l j nt(p-2q+l) ' 

Using (6) and (7) in (5) with p = 4k + 1, we have 

2k 
L npt " L n t l ^ j ( _ 1 ) n C| Lnt(4k-2q+2) + * (8) 

l i p t l i t 1 

q=l 

k-1 
L n t ( I ^ L 4 n t ( k - q ) + X / ' ^ ' ^ - ' o , a „ ^ + 1 

^ + 1 T 
•J2nt(2k-2q+l) 

, q=0 q=l 

( k-1 k 

X ) [ 5 F 2 n t ( k - q )
 + 2 1 + X ) ( - 1 ) n + 1 [ L n t ( 2 k - 2 q + l ) " 2 ^ " 1 + * 

q=0 q=l 

( k-1 k 

X 5 F 2 n t ( k - q ) + S ( - 1 ) n + l L n t ( 2 k - 2 q + l ) + P 
q=0 q=l since L. = 5F2 + 2, L2 = L0 + 2 ( - l ) r , and t(2k - 2q + 1) is odd. 4r 2r r 2r ^ 

Now pt|L , (2k - 2q + 1) is odd, and 2(k - q) is even so that by (2) and (3) one sees . 
that p is a factor of the expression in the parentheses of (8). Hence, p2t|L , and the theo-
rem is proved if we have p = 1 (mod 4). 
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Suppose p = 4k + 3» An argument s imilar to the above yields 

k+1 k-1 
(9) V = Lnt ( J ] Lnt(2k-2q+3) + ] £ ^ ' " W q ) " ^ 

q=l q=0 

and we see , as before, that p2t|L , if p = 3 (mod 4). 
Since 3|L2, we have 

ki ki 
3 lL2,,3k-l o r 3 | L

2 - 3 k for k - X ' 

However, 2|L 3k for k ^ 1. But (2,3) = 1 and we have an alternate proof of Theorem 1 
so that Theorem 1 is now an immediate consequence of Theorem 2. Fur thermore , this p ro -
cedure can be used to establish sequences {n, } such that n, |Ln, . We have 

Theorem 3. Let p be any odd pr ime different from 3 and such that p L qu , k zLl, 
Let n = 2-3 p where t >. 1; then n L . 

k Proof* By Theorem 1 and (3), we see that 2-3 L 9 Q^ ^ for all t ^ 1. However, by 
Theorem 2 and (3), one has p |L ^ ^ for t ^ 1. Since ( 2 * 3 ^ ^ ) = 1, one has 2-3 p | 
L2-3kpt f o r t £ 1 -

By an argument s imilar to that of Theorem 3, it is easy to see that the following are true. 
Corollary 1. If p and q are distinct odd primes such that p L and q |L where m 

and n a re odd, then (pq) L , vk„i for all k >. 1. FM l m n (pq )^ ± 

and 
Corollary 2* If p and q are distinct odd pr imes different from 3 such that ptL9 Qk 

k t r i 
and q |L9 ok w n e r e k — 1 a n ( i n ~ 2 ' 3 P Q t n e n n | L £° r t ^ 0 and r ^ 0. 

Using F = F L , we have 
I k i 

Corollary 3. If p is an odd prime and p|L then p | F 9 £_•]_ for k > 1. 
and 

Corollary 4, If p and q are distinct odd pr imes such that p|L and q|L where 
m and n a re odd integers then (pq) | F„ / v^_i for k > 1. 

Corollaries 3 and 4 can be strengthened if we know that p is an odd prime and p |F .• 
To do this, we show another theorem discovered independently by Carlitz and Bergum. 

I k i 
Theorem 4, If p is an odd prime and p |F then p | F \^_i for all k > 1. 
Proof. By hypothesis, the theorem is true for k = 1. Assume p | F j ^ and let 

t = p " then pt J F fc. We shall show that p2t ( F ,. Using Binetfs formula together with 
the factorization of x F - y , we have 

(10) F = F ^ J\nt(p-i)pnt(i-l) 
i=l 
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The middle term of the summation is (-1) p " while the sum of the q and 
(p + 1 - q) t e rms , where q ^ (p + l ) / 2 , using the formula L 2 = 5 F | + 2(-l) , is 

(11) ant(p-q)^nt(q-l) + ^nt(q-l)^nt(p-q) = ( _ 1 )
n (q-D L 

^2nt(p-2q+l)/2 

( " l j 5 Fnt(p-2q+l) /2 + Z{~1} 

By substitution into (10), we obtain 

' p -1 /2 

™ %t = Fnt I 2^ ^^^"^ ^t(P-2q+1)/2 + P^)n(P"1)/2 

q=i 

Using ptjF , and (1), we see that p is a factor of the expression in the parentheses of 
(12) so that p2t I F , and the theorem is proved. 

n I I ki ki Let F (L ) be the least such that p F (p L ) then it is still unresolved if p F (p , n n , , 9
 F | n ^ 1 n v ' m F ' 

L ) o r p K | F (p / L ) for npK"Z < m < npk-1 and k > 2. 
An immediate consequence of Theorem 4, by use of (1), is 
Corollary 5. If p and q are distinct odd pr imes such that pJF and qJF then 

Another result of Theorem 4 which was already discovered by Kramer and Hoggatt and 
occurs in [2] is 

(13) s k | F
5 k ' for k > 1 

since F5 = 5. Note that this result also gives us a sequence {n^} such that n, | Fn , . 
Jus t as the authors could find several sequences {nj^} such that n, |L n , they were 

also able to show that there are several other sequences {n^} such that n, [Fn, . With this 
in mind, we prove the next four theorems. 

Theorem 5. If n = 3 m 2 where m > 1 and r > 1 then n | F . 
— i n 

Proof. By the discussion following Theorem 2 and Corollary 3, we have 3 \F. o m for 

3m m > 1 . But 4 | F 6 so that 4 | F 4 < 3 m for m > 1. Since (4, 3 m ) = 1, we have 4 - 3 m | F ^ 
for m ^. 1 and the theorem is proved if r = 1. 

Since 

F
3 n 2 r + 2 = F3Hi2r+lL3m2r-H = ^ n ^ r + l ( 5 F | m 2 r + 2) 

l m r+21 
and 2 | F 3 , we have by induction on r that 3 2 | Fom.9r+2 • 

Theorem 6. If , 
~ n = 2 r + 1 3 m 5 k , 

where r > 1, m > 1, and k >. 1 then n | F . 
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Proof. This resul t follows immediately from Theorem 5, (1), and (13) because 

(5k, 2 r + 1 3 m ) = 1 . 

By using Theorem 4 and Corollary 5 in an argument s imilar to that of Theorem 6, we 
have 

Theorem 7. Let p be any odd prime different from 3 and such that p | F 9 r + i n m where 
r > 1 and m > 1, Let n = 2 3 p where k ^ 1, then n F . 

1 n 
and 

r~t~l m 1 
Theorem 8. Let s = 2 3 . Let p and q be distinct odd pr imes such that p F 
1 k t 1 s 

and q F . Let n = sp q where k > 0 and t > 0 then n F . 
For our next divisibility property, we establish 
Theorem 9. If k > 1 then 2 k + 2 1F 9k„ 

I k - 1 1 
Proof. Since 8 F6, the theorem is true for k = 1. Suppose s = 2 and 8s F , . 

1 ° ^^ ' 6 s 
Since F 9 = F L = F (5F2

Q +2) and 21F3, the result follows by induction with the 
X^JS O S O S D S O S 

use of (1). 
Throughout the remainder of this paper, we analyze the prime decomposition of L 

where n is odd and establish several congruence relations between the elements of { F } 
and ( L } . With this in mind, we first establish 

Lemma 1. If n is odd then L = 4 M where t = 0 or 1 and M is odd. 
n 

Proof. Since n is odd, we have (1) L = L 0 ,., where m is even, (2) L = Ln , _ 
n 3m+l ' n 3m+2 

where m is odd, or (3) L = L 0 where m is odd. 
n 3m If L = L 0 ^ and m = 2r then L = L- _ . Since 2 | F O , L c = 5F2

0 + 2 ( - l ) r , n 3m+l n 6r+l ' 3r 6r 3r ' and (L^ , L« i n ) = 1, we have L 0 in is odd or that L_ , - = 4°M where M is odd. 6r. 6r+l 3m+l 3m+l 
By a s imilar argument, it is easy to show that L = 4°M where M is odd. 
Suppose L n = L 3 a 

2, it is easy to show that 

Suppose L = L where m = 2r + 1. By an argument s imilar to that of Theorem 

<"> L „ = L6r+3 

if r is even; 

if r is odd 

Now 2 F n / x so that the t e rms in the parentheses are odd and L = 4M where M i 3(r-q) ^ n 
is odd. 

The following theorem is due to Hoggatt while the proof is that of Brother Alfred 
Brousseau. 

Theorem 10. The Lucas numbers L with n odd have factors 4 M where t = 0 or 
1 and the prime factors of M are pr imes of the form 10m ± 1. 

Proof. The first part of the theorem is a result of Lemma 1. 

From l £ - \_1
L

n+1 = ( -Dn55 we have that L - j L ^ = 5 (mod p) for any odd 
prime divisor p of L . However, L ,n = L + L - so that L ,- = L -. (mod p ) . n n+1 n n-1 n+1 n-1 F 
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Therefore, L2 .. = 5 (mod p) and 5 is a quadratic residue modulo p. Since the only 
pr imes having 5 as a quadratic residue are of the form 10m ± 1 , we are through. 

Using Binet's formula, it can be shown that 

( 1 5 ) L 12 t + j = 5 F ( l 2 t + j - l ) / 2 F ( 1 2 t + j + l ) / 2 + (-»{]~m> J o d d -

Combining the resul ts of Lemma 1 with (15), we have 
Theorem 11. There exists an integer N such that 

(a) L 1 2 t + 1 = ION - 1 , 

(b) L 1 2 t + 3 = 4(10N + 1) , 

(0 L 1 2 t + 5 = ION f 1 , 

(d) L 1 2 t + ? = ION - 1 , 

and 
(e) L 1 2 t + 9 = 4(10N - 1) , 

(f) L 1 2 t + l l = WN - 1 . 

Since the proof of Theorem 11 is trivial , it has been omitted. However, a word of cau-
tion about the results is essential. Even though L-„. « = 4(10N + 1) and L ? , _ = ION + 1, 
not all prime factors are of the form lOn + 1 since 192|L12.i443 and 1992 |L«I2.I82+5- How-
ever, the number of prime factors of the form lOn - 1 which divide L ? or L , 
must be even. 

Since l l 2 L ^ ^ + T * 21l|Ll2el+9 and ll2|L12.22+11» we see that there can be pr imes of 
the form lOn + 1 which divide L for j = 7, 9, or 11. In fact, the number of pr imes 
of the form lOn - 1 which divide L- n , ,. where i = 7, 9, or 11 must be odd. 

12t+j J 

Examining [4] , we see that L49 = 29-599786069 so that L - 2 - may have prime fac-
tors of the form lOn ± 1. 

By Binet 's formula, we have 

( 1 6 ) F n + 6 - F n -2 = L n + L n + 4 = L n + 2
L 2 " 

Hence, by expanding and substitution of (16), we have 

2 5 - l 
(1?) J2 Ln+4i = Fn+2i+2.2 " Fn-2 • 

i=0 
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Using (16) and induction, it can be shown that 

2 3 - l j 
(18) J2 Ln+4ki = V(2J-l)2k " L

2ik • ^ X ' 
i=0 1~1 

Hence, by (17) and (18) with k = 1 and n replaced by n + 2, we have 

195 

(19) 

so that 

Ln+2J+1 .n
n V = Fn+2J+2 " Fn 

1=1 

(20) F
n +23 + 2 " F n ( m o d L 2 i ) for 1 ^ i < j 

and 

(21) F n + 2 J + 2 S F n (mod L n + 2 j + 1 ) if j t 0 . 

In papers to follow, the authors will generalize, where possible, the results of this pa-
per to the generalized sequence of Fibonacci numbers as well as to several general l inear 
recur rences . They will also investigate sums and products of the form occurring in (18). 
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