COMBINATIONS AND SUMS OF POWERS

MYRON TEPPER
195 Dogwood, Park Forest, lllinois 60466

We adopt the following notation and conventions:

1. n and Q are non-negative integers.

n
2. Sq = E Q.
i=1
b
3. E F@i =0 for a>b .
i=a
b
4. M FG@ =1 for a> b.
i=a

5. By = 1/6, By = -1/30, B = 1/42, etc., are the non-zero Bernoulli numbers.

m m-1 X.
- -1, 1y [ Q+1
" gQ(Xu XZ’ , Xm) ) [i=1 B ] [ J'El (x )] (Xm - 1) |
3 j—l

For example,

a =17 (5)

u1,3) = @y (3)(

£,(1,3,4) = (1-3-4)‘1(3)(
7. dQ(Xx’ Xpy 0%y X)) = gQ(x1, Xgy **%s xm)-nx1 .
Theorem 1. Say Q = 0. Then

Q
@+1s. =t Q@+r® -1+ 10 @-1r) ,
Q i=1 !

where
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T
1 -r,
i=2 !

is expressed in terms of sums of products of the T and for each such product, e.g.,

T Tyy” "t Txps where x; < xp< ... < x for m 2 2, we let Ty Txy* to0 s Tx =

X" Xm
dQ(xy, X, =+, Xpy).

Theorem 2. Say Q = 1. Then

2Q
2Q + 1)BQ = -1y i1:'12 (1 - ri) )
where
2Q
-r; I (1 -r,)
i=2 !

is expressed in terms of sums of products of the Ty and for each such product, e.g.,
g, *Tx,t 00t Txpps where xy < x5 < -+ < X for m 2 2, we let Ty, Txy” 7 Txpy =
gZQ(Xls X2: ttty Xm)-

Theorem 3. Say Q = 1. Then

(S+1)Q—SQ=(n+1)Q—1,

where S’ is formally replaced by Si when the left-hand side of this equation is expanded;
e.g., 1S;+3S,+3S, = (n+1)3 - 1. Hence, starting with Sy = n, this theorem canbe used
to find SQ in a recursive fashion.

Theorem 4.

1 11 n
St=gr |1 np2|tR
1 0 n
1 9 2| 4 2
Sy = 3T 1 n n
1 3 nd
1 0 0 n
2
S — 4_]’. 1 2 0 n +n3 ,
11 3 3
1 4 6 nt

etc., where the entries in the determinants are binomial coefficients, zeros, and powers of

n.
We now illustrate two more methods for finding SQ.
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Method 1. The "(@ + 1)Q - (- 1)Q" method. For example,
n

Z [(i + 1% - G- 1)2] =Zn:4i .

i=1 i=1

(n+1)2+n2-1=2 4i .
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Method 2. Lagrange interpolation. Assuming that SQ is a polynomial of degree Q +

1 in n, we now compute S;. Let f(n) = 8; = 1+2 +--+ +n. Then, by Lagrange interpola-

tion, we have f(n) = f(1)Py + £(2)P, + £(3)P, where, letting t, = i,

n - t)h - t3)

o - _h-2@-3)

17 -0 - &) -1)-2)
-t -k ) g

K ey e B Y
B - t))n - tp) _ b -1)h -2

Py = & -t - &) @)
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