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Numerous extensions of the Fibonacci and Lucas Numbers have been reported in the literature [1—6]. In this
paper we present a computer-generated plot of the complex representation of the Fibonacci and Lucas Numbers.
The complex representation of the Fibonacci Numbers is given by [5,6].
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The Fibonacci identity: F(x) = F(x — 1)+ F(x — 2) is preserved for the complex parts of F(x):

RelF(x)] = Re[F(x — 1)] + Re [F(x — 2)]
and

Im[F(x)] = Im[F(x — 1)] + Im[F(x - 2)] .

Figure 1 is a computer-generated Argand plot of F(x) in the range —5 <x < +5.
The branch of the curve for positive x approaches the real axis as x increases. Defining the tangent angle of the

curve as: !
= eon=14 Im[F(x)] .
v = tan | Re[F(x)] } ’

this angle approaches zero for large positive x since
m = im[F(x)] = 0.

The negative branch of the curve approaches a logarithmic spiral for x large and negative. The modulus r is
given by:

r = {ReZ [Flx)] +Im? [F(x)] } *
in the limit
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Fig. 1 Computer-Generated Argand Plot Fig. 2 Computer-Generated Argand Plot
of the Fibonacci Function of the Lucas Function

Inr ~ (-y/w)k ,

where

k = In(p//5) and ro~ e (VKM o pkx

Similarly, the Lucas number identity:

Lix) = Fix+1)+F(x—1)

leads directly to [6]:

Lix) = ¢*+(-1)*¢p™>

and the complex representation of the Lucas Numbers follows

Lix) = ¢*+ ¢~ (cos nx + i sin wx)

with

RelL(x)] = ¢* + ¢~ cos mx and ImlL(x)] = ¢~ sin x .

Note:

- =1
imlLx] = —= ImlFl] .

As with the previous case for n large and positive, the positive branch of the Lucas number curve approaches the
Real axis. Again, the negative branch approaches a logarithmic spiral for » large and negative.
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