A FAREY SEQUENCE OF FIBONACCI NUMBERS

KRISHNASWAMI ALLADI
Vivekananda College, Madras—600004, India

The Farey sequence is an old and famous set of fractions associated with the integers. We here show that if we
form a Farey sequence of Fibonacci Numbers, the properties of the Farey sequence are remarkably preserved (see
[2]). In fact we find that with the new sequence we are able to observe and identify ““points of symmetry,” “inter-
vals,” "“generating fractions” and “stages.”” The paper is divided into three parts. In Part 1, we define “points of
symmetry,” “intervals” and “generating fractions” and discuss general properties of the Farey sequence of Fibon-
acci numbers. In Part 2, we define conjugate fractions and deal with properties associated with intervals, Part 3 con-
siders the Farey sequence of Fihonacci numbers as having been divided into stages and contains properties associated
with “corresponding fractions” and “corresponding stages.” A generalization of the Farey seguence of Fibonacci
numbers is given at the end of the third part.

The Farey sequence of Fibonacci numbers of order F,, (where F, stands for the n™ term of the Fibonacci se-
quence) is the set of all possible fractions F;/F;, i=0,1,2 3,,n—1, j=1,2,3, -, n (i <j} arranged in ascend-
ingorder of magnitude. The last term is 7/7, i.e., Fy /Fo. The first term is 0/F,.;. We set Fp =0 so that Fp +F;
=F2, F;I=F2= 1.

For convenience we dencte a Farey sequence of Fibonacci numbers by 7-f, that of order F,, by 77, and the
' term in the new Farey sequence of order £, by f(,),.

PART 1

DEFINITION 1.1. Besides 7/7 we define an f(,, to be a point of symmetry if f(+7), and f/_7), have tha
same denominator. We have shown in an appendix the Farey sequence of all Fibonacci numbers up to 34,

DEFINITION 1.2. We define an interval to be set of all 7-7, fractions between two consecutive points of sym-
metry. The interval may be closed or open depending upon the inclusion or omission of the points of symmetry. A
closed interval is denoted by [] and an open interval by ().

DEFINITION 1.3. The distance between f/x and f(g), isequal to Ir—k|.

Theorem 1.1. It f(., is a point of symmetry then it is of the form 7/F; Moreover f(.+4), and f(_g), have
the same denominator if they do not pass beyond the next point of symmetry an either side. The converse is also
true.

Proof. in the 7-f sequence the terms are arranged in the following fashion. The terms in the last interval are of
the form F;_; /F;. The terms in the interval prior to that last are of the form F;_ /F; . If there are two frac-
tions Fi7/Fj-7 and Fi_p/Fj_o then their mediant® F;/F; lies in between them. That is,

. Fi-1 Fio Fi-1 Fi Fi2
if _— < == then = < < ==
Fiq Fi2 Fi_q Fj Fi-2
i L2 o B then Fra  _ Fi Pt
Fj-2  Fj-1 Fiz = F  Fja

*If ab <c/d, then (a +c)/fb + d) is the mediant fraction to those two fractions.
1



2 A FAREY SEQUENCE OF FIBONACCI NUMBERS [FEB,

This inequality can easily be established dealing with the two cases separately.
We shall adopt induction as the method of proof. Our surmise has worked for all 7-f sequences up to 34. Let us
treat 34 as F,,_;. Forthe next f-f sequence, i.e., of order F,,, fractions to be introduced are:
Fe fs B ., fnt

Fnl Fn .""li-_n' ’ e Fn

F;/ Fp, will fall in between

Fi—‘ . and Firz

Fn-1 Fn-2 ’
First assume that F;_; /F,7 < Fj.2 /F,-2. Since our assumption is valid for 34, Fi.;7./F,_; lies just before
Fi2/Fp-2. Fi-3/F,-2 will occur just after F;_5/F,_; from our assumption regarding points of symmetry. But
F;_1 /F, liesin between these two fractions. The distance of F;_;/F, from the point of symmetry, say 7/F;, is
equal to the distance F;/F,, from that point of symmetry. Hence this is valid for 55. Similarly it can be made to hold
good for 89, ---. Hence the theorem.

Theorem 1.2. Whenever we have an interval [7/F;, 1/F;_7] the denominator of term nextto 7/F; is Fizo,
and the denominator of the next term is F;+4, then Fj.g --. We have this until we reach the maximum for that
f-f,, sequence, i.e., so long as F;ro, does notexceed F,. Then the denominator of the term after F;.o¢ will be
the maximum possible term not greater than F,,, but not equal to any of the terms formed, i.e., it's either Firor+7
or Fitok-1, say Fj. The denominator of the terms after F; will be Fj_p, Fj_4, - till we reach 1/Fi_q. (As an
example let us take [7/3, 1/2] inthe f-f sequence for 55. Then the denominator of the terms in order are 3, 8,21,
55, 34, 13, 5, 2). '

Bfooﬁ The proof of Theorem 1.2 will follow by induction on Theorem 1.1.

Theorem 1.3. (a) It h/k, h'/k’, h™/k” are three consecutive fractions of an f-f sequence then
h +hll _ hl

k + k// kl

~

if h’/k” is nota point of symmetry.
(b) If A7/k’ is a point of symmetry, say 1/F;, then
Fioh+Fi_1h”
Fiok+Fi_1k”
Proof. Case 1. (From Theorem 1.2) We see that
h_Fi2ap _Fi n”

kK Fa 'K R

%
k-

)
N

i+

3
N

In this case
FiratFia _ *3-Fi _ Fi pr
Fiz2tFj2  3F; Fi~ k-
(*Fp42+ Fr_2 = 3F,, isa property of the Fibonacci sequence. See Hoggatt [1].)
Case 2.

h - 5,2& Fia g 22 Firt

7 I:j F/_2 kll F/’+7
(from Theorem 1.2). Then

Firr*Fip _2Fi _Fi _h”
Fiert b2 26 F K
similarly.
Case 3.
t‘L’-: F__L_ Il = F______i—z ll’—’: F._..i”
K F "k Fo ' k7 Fig

(from Theorem 1.2). Therefore
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Fi-1tFia _ Fi_n’
Fi-1#Fp2  Fj K7
Hence the result.
Proof of 1.3b. Let h*’/k’=1/F;. From Theorem 1.2 it follows that h"/k”=3/F .o and h/k=2/F;s5.
Therefore

Figh+Fiqh” 2Fi2+3Fiy _ Fira _ 1

Fi-2k + Fj1k” FiFit2 FiFir2  Fj
Hence the theorem.

Theorem 1.4. 1§ h/k, and h’/k’ are two consecutive fractions of an f-f, sequence then
h—h"
k—Kk

Proof. Since f(,), is of the form F;/F;, if Theorem 1.4 is to hold, then it is necessary that |h — | be equal to
Fi and |k— k’| beequal to F;. Since h/k and h’/k” are members also,

/I=F,'l ’ /7'=Fi2 1] k=F/1 v

€ f-f, (k—k'#0).

k"= F; .

2
Further

|F/'1 —Fle = Fl and |F,'l —F,'2| = F,' .

But from the Fibonacci recurrence relation £, = F,_; + F,,_2 we see that the condition for this is |/;—/>|< 2and
li1—Jj2] < 2 (but not zero) which follows from Theorem 1.2. Actually
h—h’
k—k’
are the fractions of the same interval arranged in descending order of magnitude for increasing values of /4/k.

Definition 1.4. We now introduce a term “Generating Fraction.” If we have a fraction F; /F; (i < jl. We
split F; /Fj into

Fir1#Fi2

Fj-1#Fj2
We form from this two fractions F;_; / Fj_7 and Fi_p/Fjo suchthat F;/F; isthe mediant of the fractions
formed. We continue this process and split the fractions obtained till we reach a state where the numerator is 1. F;/F;
then amounts to the Generating fraction of the others. We call F;/F; as the Generating Fraction of an Interval (G.F.L.)
if through this process we are able to get from the G.F.l. all the other fractions of “‘that” closed interval. We can
ciearly see a 7-f sequence for Fy, Fa, ™, Fp, F,'/Fn will be a G.F.l. (We also note that F,/F/, F,'_j/Fj_7 .
Fi2/Fj-2, - belong to the same interval because the difference in the suffix of the numerator and denominator is
j —i). Hence the sequence G.F.l.'sis F; /F,,F2/F,,F3/F,, -, Fo1/F,. We now see some properties con-
cerning G.F.L's.

Theorem 1.5. 1f we form a sequence of the distance between two consecutive G.F.l.'s such a sequence runs thus:

22 4,4,.6,6 8.8, -,i..,alternate G,F.L"s are symmetrically placed about a G.F.l.

Theorem 1.6. If we take the first G.F.1., say f(g, )n. then fig 17)p and f(g _7)p, have the same denominator.
For fg,)n thesecond G.F.l. fig 12y, and f(y _2), have the same denominator. In general for f(g, ), the kth
G.F.L fig, +k)n and f(g, _k)n have the same denominator.

The proofs of theorems 1.5 and 1.6 follow from 1.2.

(NOTE: We can verify that for alternate G.F.1.'s g(g,)n. f(g,)n . flg In . =+ F(gtk)n a0 f(g, k)n have the same
denominator for k is even and the sequence of distance shown above is 2,2, 4, 4, 6,6,8, 8, ).

PART 2
Definition 2.1. We now define Fj_» to be the “factor of the interval”

A
Fr Fieq
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More precisely the factor of a closed interval is that terms F, where z is suffix of denominator minus suffix of the
numerator, of each fraction of that interval. it can be easily seen (Part 1) that z is a constant.

Lenmma 2,1, W j;~i;=j2~iz>0, then
\Fj,Fi, = i Fi,| = \Fi, = Fi, W\Fj, = Fi | = AFg, — F LR, = Fi |
Proof. We apply Binet's formula that

n n
Fn=a -5

a-b ’
where
g = 7+)£5’ b= 7“ 5
2 2

Then the left-hand side (L.H.S.) of the expression and the right-hand side {R.H.S.} of the expression reduce as follows.
To prove
ajx’in - bjf’.) .
a—-b

ajz"j1 - bjz"il
a—=b

al b gl pin gh_pls g _ph |
a—>b a—b a—b a—b

because f7 —iy >0, F'j:"‘i1 is positive and hence can be put within the | | sign.
To prove

Vaix ._bjx}(aiz _b‘iz) - (aiz _bjz)(ai1 — bii)‘ = I(ajz'ix _biz‘i1}(aj1'i1 _bj1‘i1}|
the LLH.S. reduces to
iailﬁz _aixbiz +bj1+i2 _bjlaiz _ajz+i1 +ajzbi1 +bjzaix _b/2+i1‘
= |_aj1biz _aizbit +ajz[]i1 +bjzaiz| .

The R.H.S. reduces to

lajz"'i1 _ajz'jlbjl"i1 +[7j2“i1 _bjz’ilajl'ixl N
This may be simplified further using ab=—7 and j; — iy =j2—iz. The R.H.S. is then

o' %2 +bl1a"s — gl2phs —ijaiil .
We see that L.H.S. = R.H.S. Hence the Lemma.

) Corollmy. From this we may deduce that if F;, /Fj, and F,-2/Fj2 belong te the same interval, i.e., j; —i7 =
jo—io, then
FirFia=FizgFiz = Fiisiy\Figmiz = FlipisiFig-ig
Fil/Fjl < Fiz/Fj2 '
Hence
\Fii Fi, = F1,F, |

will be an integral multiple of f; _; or F; _; (the factor of that interval) which is the term obtained by the dif-
ference in suffixes of the numerator and denominator of each fraction of that interval.

Definition 2.2 We now introduce the term “conjugate fractions.” Two fractions 4/k and h”/k’, h/k and h'/k’

are conjugate in an interval .
7 1
Fi"Fiq

if the distance of #/k from 7/F; equals the distance of A”/k” from 1/F,_; (h/k # h'/k’).
Corollmy. Two consecutive points of symmetry are conjugate with distance zero.
Theorem 2.2, |f h/k and h’/k’ are conjugate [1/F;, 1/Fi;] then kh"—kh’ = Fio.
Proof.' IFrom Part 1, we can easily see that if #/k is of the form
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F; Fi,-
T then h7/k" is it (*)
Fi1 ”:/'7—7

1/F;, and 1/F;_; are conjugate. This agrees with (*) since Fz=F;=1. Since the term after 7/F; is Fyq/ Fis2
and the term before 7/F;_; is 2/ Fj+7, we see it agrees with the statement (*) above. Proceeding in su¢ch a fash—
ion we obtain the result (*). Of course we assume here that there exist at least two terms in

1 1
Fi " Fir |

Hence we can see that any two conjugate to fractions in

11|
Fi " Fiq

Fici+2 Fj-it1
Fp " Fr1 o

are given by

We are required to show |F;Fj_7+7 — Fj_1Fj-j+2|= Fi-2. This will inmediately follow from Lemma 2.1.

Theorem 2.3. (a) If h/k and h*’/k’ are two consecutive fractions in an 7-f,, sequence, which belongto [7/F;,
1/Fi-7], then kh"~hk" = Fi_5.
(b) If h/k and h’/k” are conjugate in an interval [1/F;, 1/Fj.7] kh" = hk’= F;_5.
Proof Theorem 2.3a and 2.3b can be proved using Lemma and Theorem 1.2.
Definition 2.3. It

h 1 _1
k< \FFq)
we define the couplet for A/k as the ordered pair

=4 (25)

Theorem 2.4. \n the case of couplets we find that
(Fih) - k = FyFi 2
and
k—=Fi1h = Fp+1Fi-2 .
where Fp, is some Fibonacci number.
Proof. Let h/k be

Fi-i+2
. . Fi-
Then (F;h) —k is
(1 FiFj-it2—Fj = FpFi2
and let k— F,_gh is
(2) Fi—Fi-1Fj-1+2 = Fp+1Fi2 -

Adding (1) and (2) we have

Fi-2Fj-142 = Fp+2Fi-2 -
Therefore Fj_j12 = Fpi2 OF f—i=p ie.,
(3) FiFj-it2— F;j = Fi_iFi.2 .

We can establish (3) using Lemma 2.1. Hence the proof.

Definition 2.4. We defi —
ition e define [(FZ—%) (%;{7)]
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and ( 1 >( h, _7_>
FI ’ kl kl Fi"1
to be conjugate couplets if 4#/k and A"/ k’ are conjugate fractions of the closed interval

(L _1_)
Fi " Fiq

Theorem 2.5. In the case of conjugate couplets if
F,'/I —k = FpFi—Z and k—-F,'.jh = Fp+7F,'_2 ,

then
Fih'— k" = Fp_1F,'_.2 and k—=Fi_4h” = FpF,'_Q .
Proof. We note that (j — i) in the previous proof is the difference in the suffixes of Fi and F;. If now
F/.

then p =j—i Butsince h”/k” is conjugate with h/k,

ke = Fiit
Fi-1
Therefore the constant factor, say Fg in the equation for h”/k", F;h’—k = FgF;_ issuch that
g=f—-1-i=(—-i]-1=p-1.
Therefore F;h"— k"= F_1Fi_o. Hence k — F;_1h”= F, F;_p since it follows from Theorem 2.4.

Theorem 2.6. Since we have seen that if h/k and h”/k” are conjugate then the difference in suffixes of their num-
erators or denominators equals 1, we find

htn' o (1 1 h=h'|c |1 _1_
Kk S [F,- ’ F,-_,] and = |€ [F, ’ F,-.,il
if
’ 4 7 7
h/k, h'/k’ € | =—, =—
Fi " Fi-g
Moreover
hth’
k+k”
are the fractions of the latter half of the interval arranged in descending order while
h—h’
k—k’
are the fractions of the first half arranged in ascending order, for increasing values of h/k.
PART 3

We now give a generalized result concerning “‘sequence of distances.”
Theorem 3. 1a. Points of symmetry if they are of the form f(r)n then
rec2,35281217 ;.
Or the sequence of distance between two consecutive points of symmetry will be
1,2,345,6, -,
an Arithmetic progression with common difference 1.
Theorem 3.1b. The sequence of distance for fractions with common numerator Fo,_; or Fo, is

2n—1,2n2n+1,--.
Proof. To prove Theorem 3.1a we have to show that if there are n terms in an interval then there are (n + 7)
terms in the next.
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Let there be p terms of the form  F; /F;. It is evident that there are p + 7 terms of the form Fzq /Fj. But these
fp + 1) terms ot the form Fiw7/F; arein an interval next to that in which the p terms of the form Fi/F; lie. So
the sequence is an AP with common difference 1. Moreover, the second term is always 7/F, (evident). Hence the
result, (Note: j— 7 is assumed constant,)

If we fix the numerator to be 2 and take the sequence

2 _2 2 .2
Fn' Fpe1” Fp2” 73
then the sequence of distance between two consecutive such fractionsis 3,4, 5, ---.
From Theorem 1.2 (Part 1) it follows that 2/F; lies just before a point of symmetry, say 7/F;. Since we have seen
the sequence of distances concerning points of symmetry it will follow that here too the common difference is 1. The
first term is 3 for there are two terms between 2/F, and 2/F,_;. The inequality

2 7 3 2
- < =— < — <
Fn Fn—2 Fn Fn—1

can be established. Hence the resuit.
In a similar fashion we find that the sequence of distance for numerator3is 3,4, 5, ---.
We shall give a table and the generalization

Numerator Sequence of Distance
F1 or F2 1,2,3,45,
Fz o Fu 34,56

fs or Fg 56,78 -

Fon,_7 of Fo, 2n—1,2n,2n+1,2n+2, .

Definition 3.1. Just as we defined an interval, we now define a “stage” as the set of f-f fractions lying between
two consecutive G.F.L.'s. The stage may be closed or open depending upon the inclusion or omission of the G.F.l.%.

Since the sequence of distance of G.F.l.'sis 2,2, 4, 4, 6, 6, ---, it is possible for two consecutive “'stages” to have
equal numbers of terms. We define two stages:

Fig Fi Fi Firg
-, = and —_, =
l:Fn Fn Fn" Fn

to be conjugate stages if the distance of F; /F,, from F;_;/F, equals the distance of Fj.; /F, from F;/F,. That
is the number of terms in two conjugate stages are equal. We call a stage comparison of both these stages as a “com-
plex stage.” Let us now investigate properties concerning stages. If we have complex stage

Fip Fi Fier
Fn IF"’ Fn

then we define two fractions #/k and A’/ k" to be “corresponding’ if

and
ne (f F_+z)
U
and if the distance of A/k from F._; /F, isequal to the distance of #7/k” from F;/F,.

Theorem 3.2. Two correspdnding fractions have the same numerator, If A/k .and h”/k’ are corresponding frac-
tions then A=H"

Proof. This will tollow from 1.2 (part 1).

Let F;_; /F, bethe maximum reached in its interval so that F;_y /F,-; will be the maximum for the interval
in which F;/F,, belongs. (where by maximum we mean the term with denominator Fj.o in the sense of Theorem
1.2). The term nextto F;_; /F, is Fioo/Fp,_;. Similarly the term next 10 F; /F, is Fi_o/Fp-2. But these frac-
tions are corresponding in such a fashion that we obtain the result.
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Now F;_; /F, hasnecessarily to be the maximum in its interval. Since we have considered conjugate stages 7 is
odd. Using Theorem 1.2 it can be established that alternate G.F.l.'s are maximum in their interval and that too, when
suffix of numerator is even (i — 7 iseven).

Deﬁnition 3.2. Since the number of terms in a stage is odd, we define #/k to be the middle point of a stage

Fir Fi
F, "F,
if itis equidistant from both G.F.1."s. We can deduce from this that A/k isa point of symmetry since F;_; /F,,and
F; /F, have the same denominator. So the middle point of a stage is a point of symmetry.
Corolhzrjy. If two conjugate stages are taken then their middle points are corresponding. (This follows from the def-
inition). But their numerators should be equal. This is so, for the middle points are points of symmetry whose num-
erator is 1. This agrees with the result proved.

Definition 3.3. Two fractions #/k and h”/k” are conjugate in a complex stage if the distance of A/k from
Fi_1/F, equals the distance of A”/k” from F;r;/F,, h/k < h’/k’ and the complex stage being

Fi1 Fi Fit
F,,'F,,' Fn

Taking their middle points

q _1

Fp’ Fpt1
we can see that fractions conjugate in this interval are conjugate in the complex stage. Further we saw that for con-
jugate fractions of the interval, h/k, h"/k’,

h+h’
k+k’

re fractions of the latter half of the interval arranged in descending order, and
h=h
k—k’
are fractions of the first half arranged in ascending order for increasing values of #/k.
Theorem 3.3. For conjugate fractions #/k and h”/k’ lying in the outer half of the stage we see that

h+h’
k+k’
are fractions of the latter half of the interval in ascending order while
h—h’
k—k’
are fractions of the first half in descending order for increasing values of //k. We here only give a proof to show that
h+h’ h—h’
Iy Ay

are in the interval but do not prove the order of arrangement.
Proof. For h/k, h’/k’, in the inner half the proof has been given (previous part). The middle point of

Fip F
Fn ' Fp

Fi Firg
Fn' Fn

is 7/Fp_j+2. That two conjugate fractions of the outer half of a conjugate stage differ in suffix by 1 can be establish-
ed, That is,to say, if

is 1/ Fp.i+2. Similarly the middle point of
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= I_:j—(n—i)-7
/__/.

R

then
0" _ Fi-tn-i) h+h’ _ Fifn-i)+1
k” f‘}'__] k+k’ FI'_,L1
where / is the interval [7/F,, 1/Fot1] and
h=h" _ Fi-fn-i)-2
k_kl Fj.g e /.

el,

Hence the proof.

Definition 3.4. In an f-f sequence of order F,,, [F;/F,, Fir7/F,] representsastage. Let us take an 7-f se-
quence of order Fp.y. If there we take astage [F;/Fp+7, Fi+7/Fp+7], thenwesay the twao stages are corres-
ponding stages. More generally in an /-7 sequence of order £, andan 7-f sequence of order Fp44,

Fi Firg Fi Fin
Fﬁ ’ Fn

B Fn+k ’ Fn+k
are corresponding stages. We stage here properties of corresponding stages. These can be proved using Theorem 1.2.
Theorem 3.4a. I ) i
and ———Fi , ﬂﬂ-—
Fotie " Frtk

are corresponding stages then the number of terms in both are equal.

Fi Fi
Fn, FI7 |

Theorem 3.4b. There exists a one-one correspondence hetween the denominators of these stages. If the denom-
inator of the ¢*" term of [F;/F,,, Fisry /Fp] s F; then the denominator of the g™ term of

_Fi Fig
Frie ~ Fork
is Fipk. et
We can extend this idea further and produce a one-one correspondence between
- . -
Fi Fitm Fi  Firm a ¢
o and - ) where [ <, —]
|_ F,” F, 'Fn+k F,,+k_ b’ d |

stands for the set of fractions between a/b and ¢/d inclusive of both. A further extension would give that given
two f-f sequences, one of order F,, and the other of order Fj 4.

Theorem 3.5a. The numerator of the /™" term of the first sequence equals the numerator of the ™ term of the second.
Theorem 3.5b. I the denominator of the /7" term of the first sequence is £;, then the denominator of the A
term of the second series is Fj+7 . Precisely
(a) the numerator of f(,), is equal to the numerator of 7,4
(b) if the denominator of f(,), = F;, the denominator of f(,j,4k = Fjtk
This can be proved using 1.2, We can arrive at the same result by defining corresponding intervals.
Definition 3.5. Two intervals, [1/F;, 1/ Fiz1] inan f-f sequence of order Fp, and [7/ Fiu, 1/ Fjag] inan fof
sequence of order £, are defined to be corresponding intervals.
The same one-one correspondence as in the case of corresponding stages exists for corresponding intervals. We can
extend this correspondence in a similar manner to the entire /-7 sequence and prove that
(a) the numerator of f(,),, is equal to the numerator of f1)n4«
(b) if the denominator of £/, = F; , the denominator of F(.)p+4 = Fjrs -
(c) GENERALIZED f-f SEQUENCE. We defined the 7-f sequence in the interval [0, 7/. We now define it in the in-
terval [0, ].
Definition 3.6, The f-f sequence of order F,, is the set of all functions F; /F;, j <n arranged in ascending ordér
of magnitude ij > 0. If / </ then the 7-f sequence is in the interval /0, 7/. The basic properties of the 7-f sequence
for /0,7] are retained with suitable alterations

Theorem 3.6.1. f(,), is a point of symmetry if #/.+7),, and 7(,_7),, have the same numerator (beyond 7/7. If
f(rjn is @ point of symmetry then 7,4, and f(,_x;, have the same numerator, if each fraction does not pass beyond
the next G.F.l. in either side (beyond 7/ 7).
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Theorem 3.6.2. A G.F.l.is a fraction with denominator £,
Theorem 3.6.3. A point of symmetry has either numerator or denominator 1.
Theorem 3.6.4. Beyond 1/1, any interval is given by /F,,_; / 1, F, /1]. The factor of this interval is again F,_5.
Theorem 3.6.5. The two basic properties
% .
and
(b) kh —hk’ = Fp_p
are retained.
Theorem 3.6.6. If (a) is nat good for A7/ k” being a point of symmetry then
h' _ En-1h”+ Fpoh if h h” _h”  h Fn
K F, 1k +F, ok P

For a pertinent article by this author entitled “Approximation of Irrationals using Farey Fibonacci Fractions,”
later issues.

see

f-f Sequence of Order 5

g 1.1 21 3 21
375737525731
f-f Sequence of Order 8
6 11213 2135 21
5°8°578"3"8"5"2"5"8"3"1
f-f Sequence of Order 13
g 112 1 3 213 5 213 8 5 21
871378713513 °8"3°8"13"5°2"5"13"8"3"1
f-f Sequence of Order 21
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f-f Sequence of Order 34
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