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1. INTRODUCTION

The Eulerian numbers A, x are usually defined by means of the generatmg function

(1.1) —J——X(y_” 1+ }_: 5 E

or equivalently

N -
1.2 e =7 D) Enkyk.

1—ye
From either generating function we can obtain the recurrence
(1.3) Antik = (n— k+2}Ank 1+ kA k
and the symmetry relation
(14) Ank = Ann-k+1 -

For references see [5, pp. 4874911, [6], [7], [8, Ch. 8].

In an earlier expository paper [1] one of the writers has discussed algebraic and arithmetic properties of the
Eulerian numbers but did not include any combinatorial properties. The simplest combinatorial interpretation is that
Apk is the number of permutations of

Zo={1,2n}

with £ rises, where we agree to count a conventional rise to the left of the first element. Conversely if we define A, 4
as the number of such permutations, the recurrence (1.3) and the symmetry relation (1.4) follow almost at once but
it is not so easy to obtain the generating function.

The symmetry relation (1.4) is by no means obvious from either (1.1) or (1.2). This suggests the introduction of
the following symmetrical notation:

(15) A(I’,S) = AI’+$+7,S+7 = Ar+s+1,,-+7 = A(S,I',),
It is then not difficult to verify that (1.1) implies
i r.,s X y
(1.6) D Alrs) XL - £ 8
! fr+s+1)! xe¥ — ye*

from which the symmetry is obvious. Moreover there is a second generating function

co

S
(1.7) > Alrs) X (r”}, = (1 +xFixy)N1+yFixyl,
r,s=0
where x .y
Fixy) = £ —e
xe¥ —ye*

The generating function (1.7) suggests the following generalization.

*Supported in part by NSF Grant GP-17031.
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(1.8) E Alrs|a,B) —% (1+xFixy)¥(1+yFixyi)® |
r,s=0

where the parameters a,( are unrestricted. Clearly
Alrs|1,1) = Alrs)
and
Alrsla,B) = Aflsr|Gal.

Moreover Afr,s|a, 8) satisfies the recurrence
(1.9)

It follows from (1.9) and A(00|a 6} 1 that A(rs|a B} is a polyromial in a, 8 and that the numerical coeffic-
ients in this polynomial are positive integers. Algebraic properties of Afr,s|a,f) corresponding to the known prop-
erties of Afr,s) have been obtained in [3]; also this paper includes a number of combinatorial applications. We shall
give a brief account of these results in the present paper. Of the combinatarial applications we mention in particular
the following two.

Let P(r,s,k) denote the number of permutations of Z,+;_7 with r rises, s falls and k maxima; we count a conven-
tional fall on the extreme right as well as a conventional rise on the left. We show

(1.10) Plr+1,s+1,k+1) = (“‘r‘"z") Clr+s,k),
where
min(r,s)
(1.11) Alrs) = Z (”:_2/ ) Clr+sj);
j=0

C(r +s,s) is equal to the number of permutations of Z,15+7 with r + 7 rises, s + 7 falls and s + 7 maxima. Also we ob-
tain a generating function for P(r,s,k).
The element ay in the permutation (aya5 --a,/is called a /eft upper record if

a; < ag (1 <i<k);
it is a right upper record if

a; > ag (k <i<n).
Let Afr,s;t,u) denote the number of permutations with r + 7 rises, s + 7 falls, ¢ left and v right upper records. Then
we show that

(1.12)

- ZA(r,S; tu)at-1gu"
t,u

so that the coefficients in the polynomial A(r,s|a,6} have a simple combinatorial description.
If we put

An(X/V|a,B} = 2

rts=n

it follows from the recurrence (1.9) that

Antxyla,B) = [ax+By +xy(Dy + Dy )] Ap-1(x,y|a,B).
Hence

(1.13) Aplxy
Thus it is of interest to expand the operator
Qb lax+By +xy(Dy+D0,)]" .

We show that
n
(1.14) Qip =Y ¢l (xyixy)¥(Dy+ 0,0,
k=0
where
(oc 6) 1 k
(1.15) (xy) = K@+ By (Dx+Dy)"Anlxy) ,
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where
(a+Ble= (a+BNa+B+1) - fa+B+k~1).
The case a + 3 equal to zero or a negative integer requires special treatment.
As an application of (1.9) we cite
min{m,n)

b= 3 e W 0xt 0y Amlnyla,

For additional results see §8 below.

(1.16) Aminlxy

+0, )% Anlx,

2. THE NUMBERS Afr,s)
Let
™= (3132 a,,)

denote an arbitrary permutation of Z,,. A rise is a pair of consecutive elements a;, a;4+7 such thata; < g;.;,; 4 fall
is a pair a7, aj+7 such thatay > a;+7. In addition we count a conventional rise to the left of 27 and a canventional fall
to the right of a,,. If whas 7 + 7 rises and s + 7 falls, it is clear that

(2.1) rts=n+1.

Let Afr,s) denote the number of permutations of Z,..s.7 with r -+ 7 rises and s + 7 falls. Let 7 be a typical permu-
tation with r + 7 rises and s + 7 falls and consider the effect of inserting the additional elementn + 7. If it is inserted
in a rise, the number of rises remains unchanged while the number of falls is increased by one; if it is inserted in a
fall, the number of rises is increased by one while the number of falls is unchanged. This implies

(2.2) Alrs) = (r+ 1)A(r,s— 1)+ (s+ 1)Alr—1,s).
Next if w=(aaz - a,/ and we put
b =n—aj+1 (i=12,n,
then corresponding to the permutation 7 we get the permutation

= (bybo byl
which has r + 7 fails and s + 7 rises. It follows at once that
(2.3) Aflrs) = Afs,r).
Another recurrence that is convenient for obtaining a generating function is
+ . .
(24) Alrs) = Alr,s—1)+Alr=1,5)+ 9. 9 ( A } Al KAl ~f = 1,5k —1).
j<r k<s

This recurrence is obtained by deleting the element 7 +s + 7 from a typical permutation with r + 7 rises and s+7 falls.
Now put

xTySz rts+7
(2.5) Flz) = E Alrs) % iy +”,
r,s=0
By (2.4)
_ x" 5+7z"+5+7 = K18 rtst
ZA(rs} (r+ ), 1+ 2 Alrs) s+ 0 Alrs) -t
r,s=0 r,s=0 r,5=0

+ +7 _r+s+
r7$7zrs.7

Ktk - X
+Z_0A(/’})((+k+7)i Z/I(’I}S/T_{—SW—

,

This implies
(2.6) Flz) = 1+(x+y)F+xyF? .
Since F(0) = 1, it is easily verified that the differential equation (2.6) has the solution
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Hence, taking z =17, we get the generating function

oo

(2.7) M= Z A(I’S) m‘%

xe¥ —ye* o
It is convenient to put

y
(2.8) F = Flxy = £ =€
xe¥ — ye*
It is easily verified that
(2.9) (Dx+D,)F = FZ,
(2.10) (7+XDx+yDy)F = (1+xF)(1+yF),

where Dy =23/ox, D), =2/oy.
It is evident from (2.7) that

oo

(1+xDy+yD,JF = Z Alr,s) Xy

(r+s)!
r,s=0
We therefore have the second generating function
(2.11) (1+xFix,y)1+yFix,y)) = ZOA(rs} 7 ),
r,s=

We note that iteration of (2.9) gives
(2.12) (Dx+D,)¥F = kIFK*T
3. GENERALIZED EULERIAN NUMBERS

Put
(3.1) By = o plx,y) = (1+xFixy))*(1+yFixy)®

co

(3.2) Dop= 3,

( + )’
r,s=0
Then we have
= Alrs) ,
= Alr—1,s), = Alr,s-1),
(3.3)
also
(3.4) Alrola,B) = d', Aflo,s)a,B) = B° .
It is easily verified that

(3.5) (Dyx+D0,)®yp = (a+B)FDyg
and generally
(3.6) (Di+Dy)* @y 5 = (a+BIuFKDyp
where

(a+B), = (a+Bia+B+1) - (a+B +k—1).
In the next place we have
(xDy +yDy,)®Pq 5 = afl +xF)* (1 +yF}B(x+x20X +xyD, )F +B(1+xF)*(1 +yF)F Ty + xyD, +y20y)F
[ax + By + (a+ B)xtF] Dy 5 .

I}

Hence by (3.5)
3.7) (xDx +yD,)®q g = [ax+By +xy(Dy+D,)] Bgpg .

This yields the recurrence
(3.8)
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We can also show, after some manipulation, that

+
3.9) Alrslark B) = K Z (o10) et a5+ tlap)
If we take s =0 and make use of (3.4) we get
. r
(3.10) (ar k) (@HBK=T) = S (@B bt =1 4o i) .
=0
If a+ @ is a positive integer, Eq. (3.10) becomes
N r
(3.11) ey (@EEFx 7T ) = 30 (EBAXST ) At r—tiap) .
t=0
Fora=(=1, Eq.(3.11) reduces to the known formula
r r
(3.12) (x+ 1)1 = 2. (X:»{; 7) Alt,r—t) = E( X:£?7 )Ar+7,t+7 .
t=0 ' t=0
In order to get an explicit expression for A(r,s|a, 3/ we take
14xF = Kovled gy p o =yl
xe¥ — ye*’ xe¥ — ye*
Then
®, g-(x _y) X thy X—y otf GBly=x) _ Z la+B) x* (7_ey_x)keﬁ(y—x)
(xe¥ — ye* )MB x—y—x(1-e"") I (x-y)¥
k
(a+ ) X B+ (y~-x) ( X/n (a+B), k n
Z )i K )oley —Z - Z(i}’(.)fﬁﬂ)
k/ (x - y)k jZO kg; k! (x - y)k J
= - (a+B) \ : ;
-y k Zr (77K v "-k-tx’“‘fz (-1 () g+
n=0 k=0 t=0 j=0

_ fa+8) k)
- Z (HS), E (1) (g +j)™ Z,f'?k_,-j‘, ( res. k)

The sum on the extreme right is equal to

<a+ﬁ+/—7 ) (a-/-ﬁ+r+s'>,

so that / r=i
R O R P
s=0
Therefore ”
r .
(3.13) Alisla, ) = 3 1) (@FBHI=T ) ((arBrrts ) fpajyrs.

j=0
In view of (3.3) we have also

S
_ Gl a+B+j—1 +B+r+ .
(3.14) g(—n“(a BrI=T)( arBrres) faujys
=
Fora=(=1, Eq. (3.14) reduces to
s+1
(3.15) A/“.) _E(_”s-/(r+s+2) (/+7)r+s+7 Z( 7)5—/+7<sri-;:€)/~r+s+7

j=0 /=1
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in agreement with a known formula for A, .
Returning to the recurrence (3.8), iteration gives

Alrsla,B) = (r+B}2A(r,s—2|a,[3)+ [r+B)s+a—1)+(s+alr+B—1)JAlr—1,5—1|a,B)
+(s+a)?Alr-25la,B).

This suggests a formula of the type

k
(3.16) Alrsla,B) = ) Bl k—j)Alr—j,s—k+]
/=0
where B(j, k — j) depends also on 7, 5, a, 8 and is homogeneous of degree k inr, s, a, 8: Applying (3.8) to (3.11) we get
Blj,k—j+1) = (r—j+BIBlj,k—j)+(s—k+j+a—1)BGj—1,k—j+1).
Replacing k by j + k — 7 this reduces to

3.17) Bljk) = (r—j+B)B(j, k—1)+(s—k+ BB — 1, k.
If we put

a,p) (0<k<r+s),

Blik) = (—1)* B(jk),
(3.17) becomes _ _ _
(3.18) Blj,k) = (j—r—=BJ)Blj, k—1)+(k—-s—a)Blj—1,k).
Since, by (3.17), .
B(,0) = (r+B8),  Blo, k) = (s+a)k
it follows that _ . _
Blj,0) = (-r—B),,  Blo, k) = (~s—a)¥.
Hence _
B(j, k) = Alj, k|-s —a, —r —B)
and (3.16) becomes

K
(3.19) Alr,sa,B) = (-1)% Z Al k=jl-s—a,—r—BJAlr—j,s —k+jla,B) (0<k<r+s)
=0
For k=r+s Eq. (3.19) reduces to
(3.20) Alr, sla,B) = (—-1)"5Alr,s|-s —a, —r — B)
which can also be proved by using (3.13). Substituting from (3.20) in (3.19) we get
k
(3.21) Afr,sla,B) = Z Alj k—jls—k+j+a,r—j+BJAlr—j,s—k+jla, ) fo<k<r+s).
j=0
We remark that (3.21) is equivalent to
(3.22) Dy g {X” +2z),y(1+2) } =®yg { x +xyzF(xz, yz), y + xyzF(xz, yz) } by, 5lxz, yz) .
4. THE SYMMETRIC CASE
When a = we define
@.1) Alr, s|a) = Alr, s|a,a) = Alr, s|a,a)

and
(I)a(xr y) = CI)a,a(X, y) = (I)a(y:X} -
Since @y (x, y) is symmetric in x, y we may put

e . _2.
@.2) Balx,y) = 3, 3 Ol jla) CHLEANTZ
n=0 2j<n ’
Since
nd (xDy +yDy )@y = afx +y)®y +xy(Dy + D, ) Py

g J n-2f
(xDx +yD, )P = E }:C(n,j|a) ix }(,(;X—+7})’ ,
n=1 2j<n .
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= . j n-2j
(x +y)®, = E; 2)‘Z< th—L/lCL)%—H)!L- )
n= n

XD+ D, e= 3" 3 Cln-1,j- 7|a)2'("“21’gy_/" ;;IW”'Z’ £33 Cln--1, |k et )™ /(’ f)_ﬁ;}/”"z_" ,
n=1 2j<n ' n=1 2j<n =i

it follows that

(4.3) Cln,j
The special case

al .

al = 2(n =2+ 1)Cln—1,j—1|a) +(a+j)Cln—1,]

= i n-2j
(4.4) Fixy) = 3 3 clnj) X Lety)
n=0 2n<j '
is of interest. It is easily seen that

(4.5) Cin,j) = Cin,j|1).
In the next place it follows from {(4.2) that

min(r,s) )
(4.6) Alr, sla) = E ( r;‘i;z) Clr+s,jla)
j=0
and in particular, fora=17,
min{r,s) )
4.7) Alr,s) = Z ( ’fijTZ") Clr+s,j).
j=0

To invert (4.7) we use the identity
Xn+yn = E ("7)/. ,Tg—j" (n—/) (Xy)i(X"‘V)n_zj .

2j<n g
We find that
,
- —2 n—k—
Cin, k|a) = E; (—1)%r n—”-_——k—_r—r ( kfr ’) Afr,n - r|a)
p
(4.8) et (n# 2k},
Cl2k, k|a) = 2 3 (1) Alr, 2k - r|a) + Alk, k|a) .
r=0

To get a generating function for Cfn, j|a/ putu = x +y, v =xy in (4.2). We get after some manipulation

o / N
) ila) A = YT Sinh T = (2
(4.9) ,,;Z:Z) Cln+2jjlal 27 g cosh BJu* —4v —u T i
The following values of A(r,s), C(n, j) are easily computed.
Afr, s) Cin,j)
1 1
1 1 1
1 4 1 1 2
1 11 11 1 1 8
1 26 66 26 1 1 22 16
1 57 302 302 57 1 i 52 136

5. ENUMERATION BY RISES, FALLS AND MAXIMA

We consider first the enumeration of permutations by number of maxima. Let M(n,k) denote the number of per-
mutations of Z,, with & maxima. Since we count a conventional fall on the right there is no ambiguity in counting the
number of maxima. For example the permutation {1243) has ane maxima while (3241) has two.

Let 7 denote an arbitrary permutation of Z, with & maxima. If the element n + 7 is inserted immediately to the
left or right of a maximum the number of maxima does not change. If however it is inserted in any other position,
the number of maxima becomes & + 7. Therefore we have
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(5.1) CMn+1,k) = (n—2k+3)M(n, k— 1)+ 2kM(n, k).
If we put _
Min, k) = 2"2k*1 11 (n, k),
(5.1) becomes

(5.2) M(n+1,k) = 2(n— 2k +3)M(n, k — 1) + kM(n, k) (1 <k<n .
If we take a = 7 in (4.3) we get
(5.3) Cln,j) = 2(n=2j+1)Cln—1,j=1)+(j+1)Cln—1,j) 0 <j<n .

It follows that _
Min+1,k+1) = Cln k),

so that
(5.4) Min+1,k+1) = 2"2K¢(n, k).
Thus (4.9) yields the generating function
- . . unyi _ u . —2
(5.5) Z Min+2j+1,j+1) (nigl " {cash\/u2 - _\/t'2—~—'/ sinh \Ju* —v } .

n,j=0

This result may be compared with [4].

We now consider the enumeration of permutations by rises, falls and maxima. Let P(r, s, k) denote the number of
permutations with r rises, s falls and k£ maxima, subject to the usual conventions. Let 7 be an arbitrary permutation
with r rises, s falls and k< maxima and consider the effect of inserting the additional element r +s. There are four pos-
sibilities depending on the location of the new element.

(i) immediately to the right of a maximum:

r-r+1, s-s  k—k,
(i) Immediately to the left of a maximum:

r—r, s—s+1, k—-k;

(iii) in any other rise:

r—r, s—>s+1, k-k+1,;

(iv) in any other fall:

r-or+1, s-—s, k->k+1.

We accordingly get the recurrence
(5.6) Plr,s, k) = kP(r—1,s, k) +kP(r,s —1,k)+(r—k+1)P(r,s —1,k—1)+(s—k+1)Plr—1,5,k—1).

It is convenient to put

(5.7) Plrs k) = (775 ) Bl s k.
Then (5.6) becomes
= _klr—k) _ k(s — k) _
(5.8) Blr, s, k) Trs— ok B(r—1,s,k)+ Frs oKk Blr,s—1,k)

+(r+s—2k+1)(Bir—1,s, k—1)+B(r,s—1,kJ).
We then show by induction that
Bfr,s, k) = ¢fr+s, k),

that is, B(r, s, k) is a function of r + s and k. Indeed we show that
(5.9) Blr+1,s+1,k+1) = Clr+s, k),
where C(r + s, k) has the same meaning as in (5.3).

Substituting from (5.9) in (5.7) we get
(5.10) Plr+ 1,5+ 1,k+1) = (71353 clres, k).

It follows from (5.10) that

Min+1,k+1) = 35 Plr+t,s+1,k+1) = 35 | ’*rs_—kz") Clr+s,k) = 2"2K¢(n, k)
rts=n rts=n

in agreement with (5.4)
We remark that forr=s=k
(5.11) Plk+1,k+1,k+1) =Cl2k k) = Al2k+1),
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the number of down-up (or up-down) permutations of Zog+7 . Itis well known that

(5.12) E Alzk+ 1) 22T

= tan x.
2k
o 2k + 1)
Generating functions for P(r, s, k) are furnished by
% minl(r,s) &
(5.13) XS Prnser k1) AL = Fy,y),
(r+s+1)!
r,s=0 k0
and
o min(r,s)
(5.14) 2 S A+t stik+1) —L+ L= (1+UFWU, VI)(1 + VE(U, V),
r,s=0 k=0
where
(5.15) U = Zlx+y+/(x+yP =4xyz)
' V = Bix+y —JIx +yJ* = 4xyz)
and

u_, v

FU,v) = =6
veV - veY

6. (a,3)-SEQUENCES

Let a,f be fixed positive integers. We shall generalize rises, falls and maxima in the following way. In addition to

the “real” elements 1, 2, ---, n we introduce two kinds of “virtual” elements which will be denoted by the symbols 0,
0'. There are a symbols 0 and 3 symbols 0. To begin with (n = 7) we have
(6.1) 001 o -0 )

a a

We then insert the symbols 2, 3, ---, n in all possible ways subject to the requirement that there is at least one 0 on
the extreme left and at least one 0' on the extreme right. The resulting sequence is called an (a, 8)-sequence. A rise is
defined as a pair of consecutive elements a, b with a < b, here 2 may be 0. A fall is as a pair of consecutive elements
a, b with @ > b, now b may be 0'. The element 4 is a maximum if a, b, ¢ are consecutive and a,b is a rise while 4, c is
a fall. For example in

02301540'0'60"
we have
a=2 =3 r=4 s=3 k=1.
Then we have the
recurrence
(6.2) Plr,s, k|a,B) = (k+-1)P(r — 1,5, k|a,B) + (k+-1)P(r,s — 1, k|a, B)

+r—k+1)Plr,s—1,k—1|a,B)+(s—k+1)Plr—1,5 k—1|a,pB).
In the special case a = 3 we put

(6.3) Plr, s, k|a) = Plr, s, k|a,a).

We also put

(6.4) Plr, s, k|a) = (”,S_-Zk afr, s, kla).
Now

recurrence

(6.5) Min+1, k|a,B) =

+(n — 2k + 3)M(n, k

In particular, for

Min, kla) =
(6.5) reduces to
(6.6) Min+1,kla) = 2(k +a— 1)M(n, k|a) +(n — 2k + 3)M(n, k - 1|a).
We find that
(6.7) Min+1,k+1\a) = 2"2C(n, k|a) ,
and

(6.8) Qlr+1,s+1,k+1|a) = Clr+s, kla).
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Hence, by (6.4) and (6.8), . 2k
(6.9) Pret,s ik 1ja) = (71552 clrts kja).

A generating function for P(r+ 7, s+ 1, k + 1]a) is given bv
o min(r,s)

(6.10) 2> Plridstik+ ) 7 ——L = (1+UF(UV))*(1+VFUV)P
r,s=0 k=0
where U, V/ are given by (5.15).
For a generating function for P(r+ 1,5+ 1, k+ 1lq, 8) see [3].
7. UPPER RECORDS

Returning to ordinary permutations, let 7= (a; a5 ---a,) be a permutation of Z,,. The element ay is called a /eft
upper record if
a; < ag (1 <i <kl
it is called a right upper record if
ax > a; (k <i<n).

Let A(r, s; t, u) denote the number of permutations with r + 7 rises, s + 7 falls, ¢ left and v right upper records. We
make the usual conventions about rises and falls. Also let Afr, s; t) denote the number of permutations with 7 + 7
rises, s + 7 falls and ¢ left upper records; let A(r, s, u) denotc e number of permutations with r + 7 rises, s+ 7 falls
and v right upper records.

To begin with we have

r-1 s—1
(7.1) A(r,s,‘t+7}=22(/.+’:j1 )A(j,k,‘t)A(r—j—7,s—k—7)+A(r—7,s;t} (t > 0)
j=0 k=0
and
(7.2) Alr,s; 1) = Alr,s—1) (s >1).
Put
_ x" szr+s+7
Felz) = Z Alr,sit) =2 XL

r,s=0
Then, for ¢t > 0,

oo

r+1 s_rts+1 / k _j+k+1 i s+1_r+s+1
+1(z) = Z Alr,s; U—X_Th_UT + Z Alj, k1) X E xlytgtert EA(rs) Al il ,

(j+k+1)! (rts+1)!
r,s=0

so that
(7.3) Fir1(z) = Felz)(x +xyF(z)),
where

Flz) = 22"

xe¥? — ye*?

Alsg, by (7.2),
(7.4) 1(z) = 1+yFl(z).

If we put

Glz) = 3 Folz\Y,

it follows from (7.3) and (7.4) that
G(z) = NG(z)(x + xyF(z)) + N1 +yF(z)).
The solution of this differential equation is
(75) 6(z) = LY (1+xF)™ -1}
Similarly if we put

— e r 7 =
Fule) = 3 Alrsu) XEE0 ) = 3 Fylel\

r,s=0 u=



1975] EULERIAN NUMBERS AND OPERATORS 81

we have _
(7.6) Glz) = L{t1+yFa -1} .
We now consider the general case. |t follows from the definition that
(7.7) A(r,s,-t+7,u+1)=E<l,+f,jj,) Al K )Alr—j—1,s—k—=T;u)  (t >0, u>0)
ik
and _
Alr,s; 1L,u+1) = Alr,s - 1;u) (s >0 u>20
Alr,s;t+1,1) = Alr—1,s:t) (r>20t>0
Now put -
r.,s_rs
Fooul?) = > Alrstu) X—(r%%ﬁ
r,s=0 )
Then

Fit1,u+1(2) = xyFelz)F ,(z) (t>0 u>0
F4 us1(z) = yFyulz) (u > 0)
Fir1,1(2) = xFlz) ft > 0)

F1,1(2) = 1
Therefore, by (7.5) and (7.6),

oo o

S atpt S Al st u) X2 gk B M1+ xF(2)% ~ 1]+ aBIIT + yF()) — 1]

fr+s+1)!

+aBl(1+xF(z))* = 1][(1 +yF(z))P-1] = aB(1+xF(z))*(1+yF(z))".

tu=1 r,s=0

Taking z = 7 we get

oo oo

r,.,Ss
(7.8) 20 a8 Y Alrsitu) 2l = aB(1+xFloy) (1 +yFlxy))®
tu=1 t,s=0 ’
where
X y
F(X, y) = _L;g__
v X
It follows that Xxew —ye
(7.9) Alr, sla, B) =EA(/, st u)at™Tgu-l |
tu

Thus the generalized Eulerian number Afr, s
If we put

a, ) has the explicit polynomial expansion (7.9).

Rin+1:tu) = Z Alr, s;t u)
rts=n+1
it is evident that A(n + 1, ¢t, u) is the number of permutations of Z,,+ 7 with ¢ left and v right upper records. By tak-
ingy = x in (7.8) we find that
(7.10) Rln+1:t+1,u+1) = t’;”)S,(n,Hu),
where S7(n, t + u) denotes a Stirling number of the first kind.
In particular, if we put

Rin+1:6) = ) Alrsit,  Rln+1:t) = ) Alrst),
rts=n rts=n
we get
(7.11) Rln;t) = Rin;t) = Sy(n, t).
It is easy to give a direct proof of (7.11).
8. EULERIAN OPERATORS

Put

(8.1) Aplx, y) = Z Alrs)x"yS .

rts=n
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It follows from recurrence (2.2) that

(8.2) Anlxy) = (x+y+xy(Dy+Dy))An-1(x, y).
Iteration of (8.2) gives
(8.3) Anlxy) = (x+y +xy(Dy+0,))"-1.
It is accordingly of interest to consider the expansion of the operator
(8.4) Q" = [x+y+xy(Dy+D,)]" .
We find that
n
(8.5) Q" = 3 Coxlx, yvlixy)¥(Dy+0,)%
k=0
where
(8.6) Coklx, y) = k/(k+7)/ (Dx+Dy)%Aplx, y).
More generally if we put
(8.7) = Z Afr,sla,B)x"y*

r+s=n
it follows from (3.8) that

(8.8) ,B) = [ax +By +xy(Dy+D
Thus
(8.9) +0,)]"-1,
so that it is of interest to expand the operator
(8.10) Qag = lax +By +xy(Dy +0,)]"
We find that
(8.11) E Ci% i, y)ixy)¥ (D, + D, )X,
where
(oz B) — 1
(8.12) (x,y) ki@ + Bl (Dy+D
provided a+ 3 is not equal to zero or a negative integer. Note that
Q =8y, Crilxy) = C” T ix,y).

As an application of (8.8) and (8.11) we have

min{m,n)

8.13) Apnlx, yla,B) = Z m(xV)k(Dx+Dy)kAm(x,yla,B}.(Dx+Dy)k.A,,(x,y|a,B),
k=0

where again a + 3 is not equal to zero or a negative integer.
Whena=8 = 0, {8.11) becomes

(8.14) (xy(Dy +D,))" = }: el%9 b, ydxy)* (0, + D, 0K (0 > 1)
We find that
(8.15) cl%% (xy) = k,(k 77 (Ox +0,)5 Apalx,y) (1 <k <n).
The formula
w16 6 o) = gy Z( 0+ 0, At v A a8 (1< k < 0

holds for arbitrary a,3. Whena = = U, (8.16) reduces to (8.15).
In the next place we consider the inverse of (8.11), that is,
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n
(8.17) y) (0 +0,)" = 3 B (x, )k 5 .
=0
We find that
(s.dw) (Dy+ 0,85 (xy) = nla+B+n—1)B%E  (x,y)
an . ’
>
(8.19) 20 L3 B beydlx = IRk = (1 - x) 1 = yu) P
n=0 k=0
In the special case a= =0 we put
(8.20) bok = —— B9, y) (0> 1).
Then we have " (n—1)1 “nk
n_.n
(8.21) bp1 = )LXT}%_E on .
= g
(8.22) bpt12 = E 7 0jOp-j+1
j=1
and generally
(8.23) 1
bpt1k = Z /-—bj,k-7 Op-j+1 -
This may also be written in the form j=k-1
n
(8.24) bptkk = Z /ﬁ—, Djtk-1,k-10n-+1 -
Thus for example =0
_ 1 g .
bp+3,n = Z G+1)+2) 0j+10j-i+10n-j+1
O<i<j<n
- 7
bptan = _ E mm Ui+10j—i+10k-j+70n—{<+7
o0<i<j<k<n
and so on.
For proof of the formulas in this section the reader is referred to [2].
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