THE NUMBER OF ORDERINGS OF n CANDIDATES
WHEN TIES ARE PERMITTED*

1.J. GOGD
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

In a competition it is customary to rank the candidates permitting ties and it is an interesting elementary combina-
torial problem to find the number w(n) of such orderings when there are n7 labelled candidates. c(n) has curious
properties.

Theorem 1.  w(n)is equal to n! times the coefficient of x” in the expansion of (2 — &)™, thatis,

ik 1
(1) Zo‘*’n'f,"-
-

2—e*

if w(0) is defined as 1.
By multiplying by 2 — e and equating coefficients we obtain the recurrence relation

n—1

(2) wln) = 8§+ (7) wlr),
r=0

where 8= 17and 84=0ifn #0 (“Kronecker's delta”).

| mentioned (1) without proof in an appendix to Mayer and Good (1973). [It may be compared with Proposition
XXIV in Whitworth (1901/1951) which states that the number of ways in which n different things can be distributed
into not more than n indifferent parcels is 7/ times the coefficient of x™ in the expansion of exp (e*)/e.]

Proof Let r denote the number of distinct positions in an ordering of » candidates; for example, if among five
candidates two tied for the first place, one was “third,” and the other two were “fourth and fifth equal” we would
say that the number of distinct positions is 3. We shall prove that the number g(n,r) of orderings of n candidates
having just r distinct “positions” is equal to n/ times the coefficient of x" in (e — 7). (This is Whitworth’s Proposi-
tion XXII whose proof is different.) Equation (1) then follows from the identity

2-e¥)" =3 -1
r=0

When there are just 7 “positions” for the n candidates, let us adopt the unconventional terminology of calling these
positions first, second, -, " and let us imagine that, for a specific ordering, there are n¢ candidates who are first,
n2 who are second, ---, and n, who are ' where necessarily

nyg =1 np=1-,n>1 ng+na+-+n, = n.

The sequence of numbers n7,n, -, n, can be regarded as defining the structure of an ordering that has just r “posi-
tions.” The number of orderings having just this structure (which incidentally is clearly a multiple of r/) is equal to
the number of ways of throwing n7 labelled objects into r pigeon holes in such a way that there are ny in the first
pigeon hole, no in the second one, and so on. But this is equal to the multinomial coefficient n/ /(nqsf - n,!)
Hence g(n,r) is equal to n/ times the coefficient of x7 in

*For some overlooked references, see Sloan (1973), p. 109.
Received by Editors in final form July, 1973.
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x2,x3 x2, x3 x2,x3
(3) (X+27+§?+...) (X+Z7+ﬁ+ ) (X+ZI_+‘?_!_+...)'

where there are r factors. The reason for putting in the x’s here is that they automatically take care of the constraint
ny +-+n,=n. Equation (1) then follows immediately.

Theorem 2.
o i
(4) wln) = Z r+i
r=0
Proof. We have
- i rx
- =27 (il < foge2)
— 2F
=
and the result follows at once from Theorem 1.
Theorem 3.
n n
(5) win) =3 nSi =%~ A"
r=0 r=0
n
©) = A= () - (B) =2 e 170"}

where Sf,’) is a Stirling integer (number) of the second kind defined, for example, by Abramowitz and Stegun (1964,
p. 824) or David and Barton (1962, p. 294), and tabulated in these two books on pages 835 and 294, respectively,
and more completely in Fisher and Yates (1953, p. 78). Another notation for Sf,’) is S(n,r), e.g. Riordan (1958).
We could define S/ by

(7) nSr = Argn
(Note the conventions 0% =1, S,{,o) =0ifn>1, Sf,O) =1)

Proof. It follows either from the proof of Theorem 1, or from Whitworth’s Proposition XXII, that the term cor-
responding to a given value of r is equal to the contribution to w(n) arising from those orderings of the n candidates
having just r “positions.” Equations (5) and (6) then follow at once. The “incidental” remark in the proof of Theo-
rem 1 shows that S,,(’ is an integer.

An alternative proof of Theorem 3 follows from Theorem 2 by using the relationship between ordinary powers
and factorial powers,

n
(8) M o= E Sl(lm)r(r—;’)---(r~m+7),
m=0
combined with the binomial theorem for negative integral powers.

Theorem 3 provides one way of computing w (n/, given tables ofS,(,’). The calculations can be partly checked by
the special case of (8),

n n

) 3o =0SE =3 (-1)7ATe" = (-1)"
r=0 r=1

Theorem 4.

(10) win) = Y {nsge 3, —L——1

e (10gg 2+ 2im)™* "
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o cos [(n+1)0,,]
(11) win) =148 = L {—T—0 +2 . S
(loge 2)" o= [lloge 2)? +4nPm?2] (171172
(12) = nlflogoe)™"! { %+ Z cos™ 10, cos [(n +1)8,,] } ,
m=1
where

Om = tan™" (2mm logoe)
and the sum in (8) is a Cauchy principal value when n = 0.
Corollary.
(13) wf(n} ~ nl(logoe)"" /2
when n tends to infinity.
This asymptotic formula gives the answer to the nearest integer (and hence exactly) when n < 76 (see Table 1). It

is curious that n/ (logo )" 1/2 is within 1/ 50 of an odd integer, namely w(n), when 2 < n < 13. We can obtain
w(n) exactly by taking the series of Theorem 4 as far as the first term for which m > n/(2me).

Proof of Theorem 4. By, say Titchmarch (1932, p. 113),

m a

SR D
M—roo "z +2mmi
m=—M

(1-e2)"

where z is a real or complex number, not a multiple of 271/, Put z = v — x and we can deduce that the coefficient of

X in the power series expansion of (7 —e*™¥ )" at x = 0 (when Re(u) > o) is
Zm 7
N
(14) %80‘/' lim ——-——n:; .

Moo " m (u+2mTi)
Theorem 4 follows on putting v =/og, 2.

TABLE 1
Fractional part of a, o (denoted by {a, o } ), and the values of a, 7,a,, o, and a,, 3, where a,, ;,, denotes the terms
of formula (11). The sum column gives the total to be added to the integral part ofa, o.

n { an,0 } an,1 an,2 an,3 Sum
1 .0406844905 —0.0244239291 —0.0062750652 ~0.0028030856 .007
2 .0027807072 —0.0025628988 —0.0001650968 —0.0000327956 000020
5 .0015185164 —0.0014866887 —0.0000285616 -0.0000026000 .00000067
10 .0052710420 —0.0052693807 —0.0000016476 —0.0000000133 .0000000004
16 5130767435 0.4869198735 0.0000033805 0.0000000025 1.0000000000
20 5284857660 27.4714964238 0.0000178075 0.0000000028 28.0000000000
25 4328539621 22480.5672001073 —0.0000540633 —0.0000000061 22481.0000000000
Theorem 5. (i) If n=n’ (mod p — 1), where n>1, n”> 1, we have
(15) win) = w(in’) (modp),
where p isany prime. (i) If n=0 (mod p — 1), where n > 1, then
(16) w(n) =0 (modp),

where p is any odd prime.
COMMENT. If we had defined «w (0) = 0, Part (ii) would have been a special case of Part (i), but unfortunately the
convention w(n) =1 is more convenient for Theorems 2 and 3.
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Proof. To prove Theorem 5 we first give the following properties of the differences of powers at zero.
Lemma.

(17) (i) AP =0 if a>b (ab=1223-)
(18) (ii) ATO" = AT0" (modp) if n=n’ (mod p—1), n>1, n" > 1
(19) i)~ A"0" = (=1)"" (modp) ¥ n=0 (modp—1), r#0, n#0.

Equation (17) is a special case of the fact that the a'" difference of a polynomial of degree b is zero ifa <b,
To prove (18) we first note that

M- (’1 (r=1)" 4t r(—1)"11" (r>0n>0)
(20) A0" =30 (r=0 n>0
7 (r=n=20).

But, by Fermat's theorem,

a" =a"  (mod pl,

so that (18) follows at once from (20). f n=0(mod p — 1), n #0, r #1, it follows from (20) and Fermat's theorem
that
A" = 71— (’7 ) #ot ( L 7) (~1)"" (mod p)
and this gives (19) by the binomial theorem.
To deduce Theorem 5, we now see from Eq. (5) that

n n
wfln) = Z ATQ" =~Z AT0" (mod p)
=0 r=0
by (18). Hence, by (5), with n replaced by n’,

n
wiln) = wln)+ Z ATO" = w(n’)
r=n’+1

by (17). To prove Part (ii), where n=0 (mod p — 1), n #0, we have

n n
w(n) = Z ATO" = Z (—1)1
r=0 r=1

by (19), and this vanishes because n is even when p is odd.
SOME DEDUCTIONS FROM THEOREM 5

(a) Taking p=2 in Part (i) we see that c(n) is always odd.

(b) Given any odd prime p, there are an infinity of values for n for which p divides c (n).

(c) When n is even, 3 divides w(n).

(d) 59 divides w (69) and 78803 divides o (78813). (See the factorization of < (11) in Table 2.)
te) 2'72%3 _ 1 divides w (217273 _ 2), but the division will never be done!

() wisp)=wi(s)(modp) (s=1,2 3, ). [Here, and in (f), ---, (k), p isany prime number.]
(9) w(p)=1 (mod p). (Also deducible easily from (2).)

(h) wlpX)=1 (modp) (k=1,2,3, ).

() w(2p*)=3 (modp) (k=1,2,3, ).

(k) w(3p%)=13 (modp) (k=1,2,3, ).

In Table 2, some prime factorizations of w (n) are shown, and (g) is also exemplified. Large primes seem to have &
propensity to appear as factors of cw(n).

Conjecture 1. Part (i) of Theorem 5 shows that the sequence w(7), w(2), w(3), -+ has period p — 7 when p
is a prime. It may be conjectured that it never has a shorter period (properly dividing p — 7). If this is true then the
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converse of Part (ii) would be true; that is p could divide w (n) only if n =0 (mod p — 7). | have verified the con-
jecture for all primes less than 73, but | do not regard this as strang evidence. In fact | estimate that the probability
that the conjecture would have survived the tests, if it is false, is about 0.18.

If this conjecture is true then we can deduce that w (n) is never a multiple of n, for any integer n greater than 1.
Since w (n) is always odd we need consider only odd values of n. Suppose then that n divides co(n) and letp be a
prime factor of n. Let the highest power of p that divides n be p™. By repeated application of (f) we have w(n) =
w(n/p™) (mod p), and therefore by the converse of Part (i) of Theorem 5 (which is true if the conjecture is) we
see that n/p™ is a multiple of p — 7 and is therefore even. But n is odd by assumption and we have arrived at a con-
tradiction. So the conjecture implies that n cannot divide w (n).

Conjecture 2. Modulo 2, 4, 8, 16,32, 64, 128, 256, 512, - the sequence {w(n} } runs into cycles of lengths
1,2,2,2,2,4,8,16,32, ---. That is the period modulo 2k appears to be 254 when k > 5 and, fork=1,2,3,4is
1,2, 2, and 2. This conjecture would follow from the following one.

Comnjecture 3. If w(n) is expressed in the binary system as
ano*2ap1 +223n2+233n3 *oey

then the sequence of 7™/ |east significant digits,ay,, a2, a3y, - runs into a cycle whose lengths, forr=0, 7,2, 3, 4, -
are respectively 1, 2, 2, 1, 2, 4, 8, 16, ---. That is, the period is 23 %orr>3and forr= 0,1,2is1,2, and 2. This
conjecture is formulated on the basis of the columns of Table 3.

Conjecture 4. |f w(n) is expressed in the scale of p, where p is an odd prime,
w(n) = bpo*pbpy +p2b,,2 * o

then the sequence b7,, bo,, b3, , - runs into a cycle of length p”(p — 7). This has been verified empirically forp"*!
=9, 27, and 25 (and n < 36). For r =0 we know the result is true by Theorem 5, as we said before. A feasible con-
jecture is that the periods are never less than the ones stated.

Conjecture 5. Modulo p”, where p is an odd prime, and r > 7, the sequence {w(n}} runs into a cycle of
length p""(p — 1) and no less. This would follow from Conjecture 4. It generalizes Conjecture 1.

From Conjectures 2 and 5, if they are true, we can deduce that, modulo m =2k_pf(1p;<2 -+, the sequence {w(n) }
runs into a cycle of length

ofm) it k=0,10r 2

o(ml)/2 it k=3

olm)/4 it k=4

o(m)/8 it k=85,
where ¢ denotes Euler’s arithmetic function.

Conjecture 6.  Parts of Conjectures 2 to 5 could perhaps be proved inductively, by using Eq. (2) combined with
the use of m™” roots of unity.

Conjecture 7.  For each n, w(n) and w (n + 7) have no common factor, and the highest common factor of
w(n)—Tand w(ln+1)—1 is 2. This follows from Conjecture 1.

GENERALIZATION OF SOME OF THE RESULTS

The proof of Theorem 4 suggests correctly that several formulae that we have mentioned can be generalized by
replacing /og, 2 by v. By making this change we see that, in addition to (14), we have:
The coefficient of x” in (7 — e*™“)™" (where Re(u) > 0) is equal to

(21) 1 (— —”—) "1
n! du 1Y
hod 2m-n-1
= ysn o (=1)" Boamu (u < 2m)
22) G 2m(2m —n — 1)1

m=[n+1/2]
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TABLE 3

The Ten Least Significant Binary Digits a,,, of w(n) (n

-,36)
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_ 1 n_-ru
(23) =52, e (Re(u) > 0)
r=0
7 d (i
- u 'm) u -m-1
(24) =-Te E S mle" - 1)
m=0
1 n
- 1 ju u_ q)-m-1mpn
(25) —re Z (e¥—1) A0
m=0
= -1
(26) = B0+ cos [(n +1) tan”" (2nm/u)]
mgw (u2+4172m2) (n+1)/2
For example,
o 7
LY e = £33 te— 1) am0 = 1.00000023
©or=0 " m=0

and the coefficients of 7, x,x2, x3, wein (71— ex'7)'1 are respectively

1.58,0.92, 0.9962, 1.0011, 1.00014, 0.999982, 0.9999957, 1.00000023, ---

tending rapidly to 1.
Formula (26) is always very effective for summing the series

numerically when |z| is close to 1.
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