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In this paper we consider the generalized Fibonacci second-order recurrence relation 

(D Uk+2 = xUk+1 + yUk , 
with x and y variables. Then for certain x and y in (1) we introduce the following new theorems: 

Theorem 1. If ( / p _ / = 0 (modp ) , then p>3 kalways m odd prime. 

Corollary 1. If Up + 1 ̂  0 (modp) then p > 3 is always an odd prime. 

Corollary!. \tUp+ 1 ̂ 0 (mod p2) or (mod p3)thm(p - 1)! + 1=0 respectively (mod p2) or (mod p3). 

In the Addenda of this paper we also prove: If 
Fn = k1Fn-.1+k2Fn„2 , 

(where k-j and k2 are arbitrary constant numbers), then the following relation always holds 

F2
n-Fn+1Fn.1 = {-1)nkn

2 , 
where 

F0 = h F1 = ku F2 = k2
1 + k2,-~ • 

NOTE. This paper was presented in person and in full at meeting No. 703 of The American Mathematical Society, 
New York, April 18-21, 1973. An abstract also appeared in the Notices of the American Mathematical Society, Vol. 
20, No. 3, April 1973, issue No. 145, p. A-361, under 703-A22. 

For clarity we write (1) as 
(2) Uk = xkUk.1 + ykUk^2 , 

where k>3 is a positive integer, and the xk,yk are arbitrary variables. 

Uk =xkUk-i+ykUk-2. k>2. 

\ixk=2k- 1 and yk = -(k- 1)2, then (2) becomes 

(3) Uk+1 = (2k+1)Uk-k
2Uk^ . 

What we want to show next is that if in addition to (3) we let 

(3b) Uk = kU^ + tk-l)!, 
then 

Uk+1 = (k+1)Uk + kl. 
To see this, 

Uk+i = (2k + 1)(kUk-i + (k- 1)1) - k2Uk,7 = 2k2Uk^ + kUk^ - k2u^1 + (2k + D(k - D! 

= k2Uk- / + kUk. 1 + 2k! + (k- 1)1 = (k + 1)(kUk. j + (k- 1)1) + k! = (k + 1)Uk + k!, 

which is (3b) with k replaced by k + 1. The proof is complete by induction. We then conclude that Eq. (3) may 
be written in the following two ways: 
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(4) Uk+1 = (2k + 1)Uk - k2Uk-i = (k + 1)Uk + kl, 

where k>2, U1 = 1, U2 = 3, U3 = 11, - . 
H. Gupta has noticed that the sequence /, 3, 11,50, - , Uk+i = (k+1)Uk + k! is really the second column of the 

array of STIRLING NUMBERS OF THE FIRST KIND. See Riordan [4 ] , pp. 33 and 48. Of course, in the table the 
signs are alternating. 

From page 33 of [4] we find 
(A) s(k +1,n) = s(k, n - 1) - ks(k, n) 
so that we note that if n =2, we get 

s(k+1,2) = s(k,1)-ks(k,2) 

and, from the table on page 48 of [4 ] , we note 
s(k,1) = (~1)k+1(k-1)l. 

Now let 
Vk(-1)k+1 = s(k+1,2), 

then (A) becomes 
Vk(-1)k+1 = (-Dk+Uk-1)/-kVk_7(-1)k 

or equivaiently 
Vk+1 = kVk + k! 

which agrees with (4) for k + 1. O.E.D. 
It is of course evident that 

(5) m(m-2)!/m! = 1/(m-1), 
and also that 
(6) U = 21(1)+11 
(by (4)). Then, since LJ3 = 3U2 + 2!, we combine this equation with (5, with m = 3) and (6), which leads to U3 = 31(1 
+ 1/2) +21, and in the exact way we get 

(7) U4 = 41(1+1/2+1/3) +31. 

Then in the exact way we derived (7), step-by-step (with added induction we prove that 

(8) Uk = kl(1 + 1/2+1/3+ -+1/(k-1)) + (k-1) = k! j J2 1/r ) < 

for k= 1,2,3, —. (It may be interesting to emphasize the fact that we have found the explicit formula 

k 

£ 1/r = Uk/k/J 

Now, using the well known fact that 

k 

(9) <t>(k -1) =J£ j/r = 0 (mod k2) , 
r=1 

if and only if k > 3 is an odd prime (see 1), we are in a position to prove the following theorems: 
(10) ThearemlAi Up-i^Q (modp ) , then/? > 3 is always an odd prime. The proof is immediate by combin-

ing (8, with k = p - 1) with (9) whichJeads to the congruence Up^1 = (p - 1)!(p(p - 1)^0 (modp2). 
(10a) Corollary I. Sf Up+ 1 = 0 (mod p), then p > 3 is always an odd prime. 

The proof of Corollary 1 is immediate by combining (3b, with k replaced by some odd prime number p > 3) with 
Wilson's theorem (Wilson's theorem: (p - 1)f + 1 ^0 (mod p), if and only if p is a prime number), since 

(10b) Up+1 s pUp.1 + (p- 1)1+1 = 0 (mod p). 

(10c) Corollary 2, If Up+ 1 ^0 (mod p2) or (mod p3), then (p - 1)! + 1 =0 respectively (mod p2) or (mod p3). 

We easily prove (10c) by combining (10b) with (10). Since this leads to 
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(10d) Up+1 = (p-1)1+1 (modp3) . 

ADDENDA 

1. We write the following familiar congruence (see 2): 

(11) If p >3 is a prime then (p - 1)!=pBp-i -p (modp*-), 

where B is a Bernoulli number. Mow, combining (11) with (10d) we have 

(12) Up - pBp-t -p (modp2) . 

(13) 2. N. Neilsen (see 3) proved that: \\p=2n + 1, P= 1*3*5 ~(2n - 1), and/? > 3 is a prime, then 

P = (-1)n22nn! (modp2) . 

Now, combining (10d) with the results in (13) leads to 

(14) U2n+1 = (-Dn24n(n!)2 (modp2), where 2n + 1=p is a prime >3. 

It is easy to prove that 

(15) (Ik - I)!)2 = U2
k + Uk^Uk - Uk.7Uk+7 = F(k - 1) . 

Proof. In (3c) we have Uk - kUk-i = (k - 1)!, we then put (Uk - kLl^)2 = F(k - 1), and this leads to 

(15a) Uk+1 = (2k+1)~k2Uk^ , 

where, since (15a) is identical with (4), we have proved that (15) holds. Now, in (15) we let/? = k- 1, so that 

(nl)2 = U2
H + UnUn+1 - UnUn+2 = F(n), 

and combining this identity with (14), we have: 

(16) U2n+1 = (~Dn24n(F(n)) (modp2), 

where 2n + 1 = p is a prime >3. 
3. A generalized version of (4) may be derived in the following way: Put 

(17) Uk = Uk^xk + (k-D! 

(where the* are arbitrary variables). Then, multiplying (17) through by k, we have 

(17a) kUk = kUk-ixk + k!, 

but in (17) it is evident that 

(17b) Uk+1 = Ukxk+1 + k!, 

and subtracting (17a) from this equation we get 

(18) Uk+1 = (k+xk+1)Uk-kxkUk„1 . 

Example of 3. We easily prove (4) with (17b) and (18), if we let 

*k = K *k+l = k+1, -,xk+j = k+j (j = 0, 1,2,-). 

4. In conclusion, it may be interesting to note: If 

(19) Fn = k1Fn-1 + k2Fn-2. 

(where k7 and k2 are arbitrary constants) then the following relation always holds: 

(19a) F2-Fn+1Fn^ = (~1)nkn
2 , 

2 
where FQ = 1, Ff = kf, F2 = k1 + k2, 
Proof. In (19) we may write Fn+] = k7Fn + k2Fn„t, and combining this with (19a), we have 

(20) k1FnFn.1-hk2F^1 = F2+(-1)n+1k2 . 

Now, we multiply both sides of (20) by k2 and then add 
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to both sides of the result which leads to 

(20a) k2F2+2k1k2FnFn^+k2F2_.1 = k2F2-i- k2F
2+ k7k2FnFn„7 + (-1)n+1kn

2
+1 . 

It is easily seen that 

Fn+2 = k7Fn+7 + k2Fn = k2
7Fn + k7k2Fn-.7 + k2Fn , 

and combining this equation with (20a), we have 

(20b) (kiFn + k2Fn„7)
2 = F2

n+1 = Fn+2Fn + (-1)n+1kn
2
+1 . 

In the same way we found (20b), we proceed step-by-step (with added induction) and prove that the identities in 
(19) and (19a) are correct. 
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ABSTRACT 
The first section of "Pythagorean Triangles" is primarily a portion of the history of Pythagorean triangles and re-

lated problems. However, some new results and some new proofs of old results are presented in this section. For 
example, Fermat's Theorem is used to prove: 

Levy's Theorem, If (x,y,z) is a Pythagorean triangle such that (7,x) = (7,y) = 1, then 7 divides x + y orx ~y. 
The historical discussion makes it reasonable to define pseudo-Sierpinski triangles as primitive Pythagorean trian-

gles with the property that x = z - 1, where z is the hypotenuse and x is the even leg. Whether the set of pseudo-
Sierpinski triangles is finite or infinite is an open question. Some elementary, but new, results are presented in the 
discussion of this question. 

An instructor of a course in Number Theory could use the material in the second section to present a coherent 
study of Fermat's Last Theorem and Fermat's method of infinite descent. These two results are used to prove the 
following familiar results. 

(1 A) No pythagorean triangle has an area which is a perfect square. 
(2A) No pythagorean triangle has both legs simultaneously equal to perfect squares. 
(3 A) It is impossible that any combination of two or more sides of a pythagorean triangle be simultaneously per-

fect squares. 
If 2 is viewed as a natural number for which Fermat's Last Theorem is true, then the following are obvious gener-

alizations of 1A, 2A, and 3A. 
(1B) If k is an integer for which Fermat's Last Theorem holds, then there is no primitive pythagorean triangle 

whose area is a kth power of some integer. 
(2B) If k is some integer for which Fermat's Last Theorem is true, then there is no pythagorean triangle with the 

legs both equal to k powers of natural numbers 

[Continued on Page 120.] 


