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There have been numerous studies of the general Pascal recurrence relation 
(1) f(x + 1,y+1)- f(x,y +1)- f(x,y) = 0, 
Defining 

&xf(*,y> = f(* +hy)- f(x,y), Ayf(x,y) = f(x, y+D- f(x,y), 
Exf(x,y) = fix + I yh Eyf(x,.y) = f(x, y+1), 

Milne-Thomson [8] notes that Eq. (1) may be recast in the form of the partial difference equation with constant 
coefficients 
(2) Eybxf(x,y).-f{x,y) = 0 
for which one may write down the formal solution 
(3) f(x,y) = (1 + Ey1 ) x <p(y), 
where $(y) is an arbitrary function. Hence Milne-Thomson finds the classical formal solution (finite series when x is 
a positive integer) 

oo 

<4> f(*>y) = £ U )*(y-k)' 
k=0 

There is then also an alternative way to write such a formal series solution: 
oo 

(5) f(x,y) = J^ ( * ) My-x + k). 
k=0 

These are old and well-known results, easily found in other treatises on the calculus of finite differences. The method 
of generating functions is used in [8] also and the results agree with the two possible series solutions we have quoted 
above. 

As for getting a nice, elegant, explicit formula for the general solution to such partial difference equations (and of 
higher order), we would be remiss if we did not mention the two valuable papers of Carlitz [3] and [4 ] . Anyone 
working with arrays of numbers ought to consult these papers for a close-hand study of the interesting way Carlitz 
handles the equations. These papers deal with formulas for sums of powers of the natural numbers and the formulas 
involve Bernoulli and Stirling numbers as well as expansions of differential operators. 

Most recently, Eq. (1) has arisen in some interesting new work on partitions [1 ] , [5 ] . Carlitz's solution of a recur-
rence in [5] has now attracted Hansraj Gupta [7] who has announced the following result: 

Theorem. Let c(n + /, k) = c(n,k) + cln, k - 1), with c(n,0) = a(n), c(1,k) = b(k), n,k > 1, where a(n) and h(k) 
are arbitrary functions of n and k, respectively. Then, explicitly, 

(6) '<»*> = l L { I ' - ] ) *(n--r) + ± ( " ; 1 ) b < k - r ) , k>1. 
r~k r^O 

This generalizes the solutions and formulas given in [1] and [5 ] . What we propose to do here is to show the equiva-
lence of Gupta's formula (6) and the well-known formal series solution (4). We show that the one implies the other. 
A simple combinatorial identity listed in [6] equivalent to the Vandermonde convolution (addition formula) is used 
in the discussion. 

We first need to reformulate Gupta's result in the notation of the present paper. In our notation, formula (6) becomes 
x y-1 

(7) f(x,yj = £ ( ; i \ ) f(*-r,0)+Y. ( *r )MY-r). 
r=y r=0 
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for integersx,y ^ 1. 

In the steps below we need at one spot formula (3.4) from [6 ] : 

We find then that assuming (4) 
x x 

r=a 

j=0 1=0 r=y 

so 

r=y 

that we 

oo 

¥-i) 
x'1 / 

E 
r=y-1 

j=0 

have shown in fact 

r=y 

M' 
oo 

)-E(; 
r=y 

j=0 r=y-1 

r=y r=y 
Upon adding the trivial relation (clear from (4)) 

£(Xr)f(0,y-r)=VJ2{*)Hv-r) 
r=0 r=0 

to both sides of (9), we find that we have proved (7). Conversely, it is easy to see how to follow the steps in reverse 
so that series (4) can be broken into two parts as specified in (7). Solving (1) in terms of an arbitrary function 0 is 
equivalent to setting up the two sequences f(x - r, 0) and HO, y - r). We leave aside the discussion of convergence 
questions. 

As a final observation, Cadogan [2] has shown how to solve the slight extension of (1): f(k,n) = pf(k, n - 1) + 
qf(k- 1,n - 1), wherep,q are arbitrary fixed constants. He interprets the resulting arrays in terms of arithmetic and 
geometric sequences for certain choices of parameters. There is nothing hew in this, but his paper is a worthwhile 
pedagogical survey written at an elementary level. Similarly, there is nothing "new" in the present paper, but we have 
spelled out the manipulations of our proof to show how one actually does the verification of equivalence. In a similar 
way the reader may write out the same argument using (5) instead of (4). Of course, the equivalence of these with 
Gupta's (6) has been shown here only when x,y are integers, and the reader must bear in mind that (4) and (5) are 
more general than (6) because they hold in cases whereby are not integers. The series manipulations leading to (9) 
are easily justified because the series are really finite series, I x J = 0 for example, when r > x, x being a non-negative 
integer. ^ 
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