SUMS AND PRODUCTS FOR RECURRING SEQUENCES

120 (70)

$G_{n+k}(x,y) = yH_{n-1}(x,y)V_k(x,y) + H_n(x,y)V_{k+1}(x,y).$

Using (55) with (69) and (67), it can be shown that

(71)
$$H_{n-1}(x,y)V_k(x,y) - H_n(x,y)V_{k-1}(x,y) = (-1)^k y^{k-1} G_{n-k}(x,y).$$

Letting k be odd or even in (68) through (71), we have

(72)	$H_{n+k}(x,y) + y^{k} H_{n-k}(x,y) = H_{n}(x,y)V_{k}(x,y),$	k even;
(73)	$H_{n+k}(x,y) + y^k H_{n-k}(x,y) = G_n(x,y) U_k(x,y),$	k odd;
(= a)	k	

- (74) $H_{n+k}(x,y) y^{k} H_{n-k}(x,y) = H_{n}(x,y) V_{k}(x,y), \quad k \text{ odd };$
- (75) $H_{n+k}(x,y) y^k H_{n-k}(x,y) = G_n(x,y) U_k(x,y), \quad k \text{ even };$
- (76) $G_{n+k}(x,y) + y^{k}G_{n-k}(x,y) = G_{n}(x,y)V_{k}(x,y), \quad k \text{ even };$
- (77) $G_{n+k}(x,y) + y^k G_{n-k}(x,y) = (x^2 + 4y)H_n(x,y)U_k(x,y), \quad k \text{ odd}:$
- (78) $G_{n+k}(x,y) y^k G_{n-k}(x,y) = G_n(x,y) V_k(x,y), \quad k \text{ odd };$
- (79) $G_{n+k}(x,y) y^k G_{n-k}(x,y) = (x^2 + 4y)H_n(x,y)U_k(x,y), \quad k \text{ even.}$

Observe that if we replace H by U and G by V then Eqs. (72) through (79) yield Eqs. (56) through (63).

If we let y = 1 in (64) then Eqs. (72) through (79) are those of (30) through (33) and (36) through (39) where we replace $V_n(x,y)$ by L_n , $H_n(x,y)$ by H_n , $G_n(x,y)$ by G_n , and $U_n(x,y)$ by F_n . The same substitutions in (40) through (51) will give us the summation-product relations relative to the sequences $\{H_n(x,y)\}$ and $\{G_n(x,y)\}$ if y = 1.

In conclusion, we observe several other results which are a direct consequence of the formulas of this paper [2; p. 19]. If we replace n by k + 1 in (5) through (8) we have F_k , L_k , F_{k+1} , and L_{k+1} are relatively prime to F_{2k+1} for $k \ge 1$. If we let n = k + 2 in (5) through (8), we have F_k , L_k , F_{k+2} , and L_{k+2} are all relatively prime to F_{2k+2} for $k \ge 1$. If we let n = k + 2 in (5) through (8), we have F_k , L_k , F_{k+2} , and L_{k+2} are all relatively prime to F_{2k+2} for $k \ge 1$.

1. Letting n = k + 1 in (9) through (12), we see that F_k , L_k , F_{k+1} , and L_{k+1} are all relatively prime to L_{2k+1} .

If we let n = k + 1 in (56) through (59) with y = 1 we see that the Fibonacci polynomials $U_{2k+1}(x, 1) + 1$ are factorable for $k \ge 2$. If n = k with y = 1 in (56) through (59) then $U_{2k}(x, 1)$ is factorable for $k \ge 2$.

REFERENCES

- 1. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Co., 1969.
- V.E. Hoggatt, Jr., and G.E. Bergum, "Divisibility and Congruence Relations," *The Fibonacci Quarterly*, Vol. 12, No. 2 (April 1974), pp. 189–195.
- A.F. Horadam, "A Generalized Fibonacci Sequence," American Mathematical Monthly, Vol. 66, 1959, pp. 445– 459.
- 4. I. Niven and H. Zuckerman, Introduction to the Theory of Numbers, John Wiley and Sons, Inc., 1960.

[Continued from Page 110.]

(3B) If k is an integer for which Fermat's Last Theorem is true, then there is no pythagorean triangle with the hypotenuse and one of the legs equal to kth powers of natural numbers.

Proofs of 1B and 2B are provided in the complete text, but 3B remains an open question.

The authors have attempted to compile a complete bibliography related to pythagorean triangles. Included in the bibliography are 111 references to journal articles, 66 references to problems (with solutions) in *Amer. Math Monthly*, 17 references to notes in *Math. Gaz.*, and 12 references to notes in *Math. Mag.* Since it is impossible to compile such a bibliography without some omissions, the authors would appreciate receiving any references not already included in the bibliography.

The complete report of which this article is a summary consists of 23 pages. It may be obtained for \$1.50 by writing the Managing Editor, Brother Alfred Frousseau, St. Mary's College, Moraga, California 94575.
