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1. INTRODUCTION
IfS= { s }» is any integer sequence of a Fibonacci space {2] based on a polynomial
flx) = —ag — = apngx" T+ x" = (x=r7) - (x=rp),
ajeZ, ryreal, r; distinet, |r;| <1fori> 2, then
[fise+ F1 = st

with any fixed k, and F on (0,1), for all ¢ sufficiently large. This is a broad generalization, in an asymptotic sense,
of a conjecture by D. Zeitlin [3] concerning the case

fix) = —T—Mx+x2 M=>1 F=MIM+1, and S = { O,1M, - } ,

defined by ug + Mug+7 = ug+2. The latter is shown to be true in all cases but one, and in slightly revised form in the
remaining case.
2. A GENERAL ASYMPTOTIC THEOREM

With the polynomial

Tex™ = (x=rg)(x—rp),

fix) = —ag—a1x — - —ap-1x""
aj integers, ry real, r; distinct, |r;| < 1for/ > 2, we associate the n-space C(f) of all (complex) sequences S ={s,,,s,,---} -
in which sg, -, 5,7 are arbitrary, but having

agsj + - *ap-1Sjtn-1 = Sjtn, 1 = 0.
The n geometric sequences
R = {7 ri, 17 }
/ 2 i T,
form a basis for the space £(f), in terms of which an arbitrary integral sequence S may be expressed in the form
S =ciRy+-+cphRy, i.e., s = c,r’72+-~- +c,,r,%,' e>0.

Since |r;| < 7, 7> 2, we may write
(1 so = cprytey eq — 0.
These results may be found in [2]. That ¢; (and hence eg) are real is shown in an Appendix. As an immediate con-
sequence, we have the asymptotic

Theorem 1. Let F be an arbitrary constant on the open interval (0,1), and S = { 8 } anintegral sequence of
the space C(f). Then for fixed k > 0, one has the greatest integer

) [I‘;(SQ +F] = Sgag
for all ¢ sufficiently large.
Proof. Using (1), we have only to prove
k+1 k Q k+Q
cyry’ " tegsg < rylcgry+eg) +F < cqry’ Fegagt 1
for large ¢, i.e., B
e+o—r7eg < F < epsg— rl,(eg +1
and this is obvious sinceeg -~ 0 and 0 < F < 1.
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3. THE ZEITLIN CONJECTURE
For the integer M > 1, let
fx)=1-Mx+x2 = (x—alx—b) a>h and F=MIM~+1)
The roots a,b have the properties
a>M b<0 |bl=(p-M@2<1 ab=-1, a=b=p p=M?>+4)%.
The sequence U = { Ug, Ug, - } is defined recursively by
up=0 u;=1ug+Mugss = ugen; 2 >0,
and is well known [2], p. 103, to be related to the roots by
ug = p (" - b%); ¢ > 0.
From this we find
k - P ( k+9 bk+Q)_p-7bQ(ak —-bk),

or
(2) a*ug = ugsro— b us.

Theorem 2. For the sequence U, one has the greatest integer

[akI.IQ +F] = Ug+9

fore =2 k=1, and for ¢ > k > 2 except possibly in the case ¢ odd > k odd > 3 when ¥/ > 2.

Proof. We only sketch the argument, which closely follows that in [1]. In all cases, the final verification consists
in the laborious comparison of two polynomials in M, for M > 1. The required relation

Ugtg < akuQ +F < Upsp+ 1
is seen from (2) to be equivalent to
—1/M+1) < b%yg < MAM+ 1),
Casel. 2 >2, k= 1. For 2 even, it suffices to prove 5> <M/(M + 1). For ¢ odd, |6 * < 7/{M + 1) suffices. These are
found to hold upon replacing |4 | by its value (o — M)/Z and rationalizing.
Case ll. 2 > k >2. For %k even, it suffices to show b¥ug < M/(M + 7). But
bRup = b*p T a% — k) = p7T(1-0%%) < MM + 1)
will hold for all & iff p"’ < M/(M + 1), which is verified as before.
For ¢ even = k odd > 2, bk+7uk < M/(M + 1) suffices. Now,
b5 Ty = (b7 (1+6%)
by an ananogous step, so we need only show that
b~ (1+65) < M/ +1).
This is the most laborious verification. ]
For ¢ odd > k even > 2, it suffices to prove —6%*7tx < 1/(M + 7). Here we find
65 o7 gk —pk) = b7 (1= 62K) < /M + 7).

since in the fimit, |b|p‘7 < 1AM + 7). This is easy
Finally, suppose 2 odd > k odd > 2, and M = 1. It suffices to prove

—bfup = p N1 +6%K) < 1M+ 1), k>3,
and this is true since o7 (7 +h%) < 1/(M + 1) is verifiable when M = 7 (and only then).
The relation of Theorem 2 may fail in the remaining case, as is easily seen from the example / = 2, ¢ = k = 3, where
[a%uz+F] = 71 = 1+ug.
Indeed it always fails for #/ > 2, ¢ = k odd > 3, as appears in the final

Theorem 3. For the sequence U, with #/ > 2, ¢ odd > k odd > 2, the value of [aXug + F/ is either ug+q or U
+ 1, according as |b\2uk <1/M+1)or 1/(M+1)< ]b| ug, the latter always obtaining for ¢ = k.

Proof. Using (2), the relations of the theorem are found to be equivalent, respectively, to



262 A GREATEST INTEGER THEOREM FOR FIBONACCI SPACES 0CT. 1975

~M/M+1) < |b|*uk < 1/AM+1) and  1/M+1) < |b|°up < (M+2)/(M+1).

We note first that |bi2uk is always between —M/(M + 1) and (M +2)/(M + 1). The first is obvious. For the second,
it suffices to prove |b|¥uy < (M +2)/(M + 1), k odd > 3. But

blkug = p1(1+6%) < (M+2)/(M+1)
halds provided
p 1 (1+65) < (M+2)/M+1),
which may be verified as in Theorem 2, Case |1, second part.
Hence for fixed &, we consider the relation of |b}Quk to 7/(M + 1) as ¢ increases from k. Now if at the start we had
b¥ug = p7(1+6%) < 1/tM+ 1),
this would imply p" < 1/(M + 1), which is false for all ¥ > 2. The theorem follows.
APPENDIX
Reality of ¢/, g
From [2] we write
R 1 0,
B) ARk i
| 4 Up-1
U, = { 1,0,,0a, t' oy Upg = { 0,0,,1,8,1, }
is an obvious basis, and the matrix determinant A is that of Vandermonde. Inversion gives
U,

R 1 r
where n n

| ro1 = ron || A:
(4) : : :

’

Up-1 fn-1,1 - I'n-1,n R,

where

ik = (-1 Ry/ A,
and Ry; is the k,j-minor of the matrix in (3). Since
| v, [ R, |
Do 1S - Ikl

Bn

S = ‘SD ...Sn_1l-

Un-l

we see that
€1 = Soro1* - *Sp-1rn-1,1.
involving the first column of the inverse in (4). But each r; 7 involves the quotient R 7;/A. The latter is real, since
any complex roots r; occur in pairs of conjugates.
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