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of the first k odd primes, we see that k£ = 7 is the lowest & for which
k
2%k < 11 p; .
=1
But once this inequality holds for one £, it holds for all larger k. For by multiplying each side by 2(k + 7), we get
K+ k k+1
2Nk + 1) < T pp2tk+1) < T p;,
=1 =1

since p+7 > 20k +1).
Therefore, for all &,
k
a < II p;,

=1
and in particular, aj is less than any product of & distinct odd primes. We conclude that no product of distinct odd
primes can be super-perfect, and the theorem follows.
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By elementary algebra one may prove a remarkable relationship between a prime number’s penuitimate (next-to-last)
digit's even-oddness property and whether or not the prime, p, is of the form4n + 7, orp = 1 (mod 4), or of the form
4n + 3, or p =3 (mod 4), where n is some positive integer.

The relationships are as follows:

A. Primes=1 (mod 4)
(1) If the prime, p, is of the form 10k + 1, k being some positive integer, then the penultimate digit is even.
(2) 1f p is of the form 10k + 3, then the penultimate digit is odd.

B. Primes =3 (mod 4)
(1) 1f p is of the form 10k + 1, then the penultimate digit is odd.
(2) If p is of the form 10k + 3, then the penultimate digit is even.

The beauty of these relationships is that, by inspection a/one, one may instantly observe whether or not a prime
number is = 1, or = 3 (mod 4). These relationships are especially valuable for very large prime numbers—such as the
larger Mersenne primes.

Thus, it is seen from inspection of the penultimate digits of the Mersenne primes, as given in [1], that all of the given
primes are = 3 (mod 4). This holds true for a/f Mersenne primes, however large they may be, for, by adding and sub-
tracting 4 from M, = 2P — 1 and re-arranging, we have

Mp=2P-1+4—4=2P_4+3=4(2°P2_7)+3 =3 (mod 4).

[Continued on Page 208.]



