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Labeled trees with unlabeled endpoints were counted by Harary, Mowshowitz and Riordan [3 ] , Moon [5] enum-
ated connected labeled graphs with unlabeled endpoints. In the present note we examine the complementary prob-
lem of counting trees in which only the endpoints are labeled, and in so doing develop a general technique for 
counting certain classes of partially labeled graphs. 

Let G = (V,X) be a graph where V= \vu v2, ••> vp j - is the set of points, and X its set of Sines; see [2] . Apart/a/ 
labeling of G is an injection f of N = iLZ —-,n\ into I/ for /? <p. A graph G together with a partial labeling f 
will be called partially labeled. Two partially labeled graphs (G, fj and (G, f2) are identical if there is an automorph-
ism 7 of G such that f2 (i) = y(fx (i)) for ! < / < / ? . 

A partially labeled tree (TJ) will be called end-labeled if f(N) is the set of endpoints of T. Let tip) and T(p) denote 
the number of end-labeled trees and end-labeled rooted trees, respectively, having p points. 

Theorem t 
(1) tip) = Blp-2) 
and 
(2) Tip) = B(p-1), 
where 

n 
Bin) = J^ Sln,k) 

k=1 

is a Bell number, i.e., Sln,k) is a Stirling number of the second kind. 
Both (1) and (2) follow from the same line of argument so that only (1) will be proved. We will present two deriva-

tions of this simple result; the second illustrates a general principle for enumerating partially labeled graphs. 
First Proof. Let (T,f) be a/7-point end-labtfed tree with V- f(N) = \ vn+1, .», vp \, so that T may be regarded 

as a labeled tree. Consider the Prufer sequence (iu i2, - , ip„2) associated with T (see for example Moon [6] or 
Harary and Palmer [4]). Each /) (1 < / < p - 2) satisfies n +1 < / )</?, so that the sequence (iu i2, -, ip_2) may 
be regarded as a distribution of p - 2 distinct objects into p-n identical cells with no cell empty. The number of 
such distributions is of course Sip - 2, p - n), and hence 

t(P} = H S(P-ZP-n), 
n=2 

as asserted. 
The second method requires several lemmas. Let U be the set of endpoints of a tree T, and let Y=Y(T) denote 

its automorphism group. Furthermore, let us define F * = T *(T) to be the restriction of V to U. Then P i s well-
defined since U is invariant under any automorphism of T. 
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Lemma 1. For any tree Tf Y(T) is isomorphic to T*(T). 
Proof. It is clear that the mapping/? defined by 7->7|( / for any y e 1777 is a homomorphism of F onto r* . 

Now let 7 be an arbitrary nontrivsa! automorphism of 7". It is easy to show (see for example Prins [5, p. 17]) that 
there exist endpoints u and v (u H) such that y(u) = v. Hence, h has a trivial kernel. 

Lemma 2. Let T be a tree with n endpoints. The number of distinct end-labeled copies of T\sn!/\T(T)\. 
Proof. Using Lemma 1, this follows from the argument which establishes the analogous result for labeled graphs 

(see for example Chao [1] or Harary and Palmer [4, p. 4] ). 
Second Proof of Theorem 1. Let t*(p,n) and t(p,n) be the number of labeled and end-labeled trees, respec-

tively, having p points/? of which end-points. It is well-known that 

(3) 'W-I^f 
and by Lemma 2, 

(4) tfp^-E^ , 
where both summations are over all p-point trees 7" with n end-points. From (3) we obtain 

substituting in (4) gives 

Hence, 

and the result follows from the fact that 

E jrT-TVl = Ti tHp'n) : 

t(p,n) = n-t-t*(p,n). 
D P! 

p-1 
t(p} = ji Z *"• 

n=2 

(p,n)f 

t*(p,n) =^rS(p-2,p-n) 
n! 

(see Moon [4] for several derivations of this formula). x 

This method of proof illustrates a general counting principle for partially labeled graphs. Let G = (V,X) be a graph 
which satisfies some given condition A; let S be a property defined on V; and S(G) the subset of V consisting of all 
points satisfying property S. Denote by C*(p,n) the number of p-point labeled graphs satisfying condition A for 
which \S(G)\ = n, and by C$(p) the number of p-point S-labeled graphs (only the points in S(G) are labeled) satisfy-
ing condition A. 

Then the next result is an immediate extension of Theorem 1, in which S(G) plays the role of the endpoints of a 
tree. 

Theorem 2. If S(G) is invariant under every automorphism of G, and for each nontrivial automorphism 7 of G, 
there exist distinct points u and v in S(G) such that y(u) = v, then 

CS(P) = ~j Ysn!C^(Pfn)f 

where the summation is taken over all n such that n = \S(G) \ for some /?-point graph G satisfying condition A. 
Note that this counting technique is useful only when the number of labeled graphs G satisfying a condition A can 

be enumerated according to the order ofS(Gl 
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[Continued from Page 278.] 

U(2n+1) = 2Tn+p(n). 

Secondly, if one places all the partition summands in a line separated by plusses, then one deletes the plus signs 
at the end of each partition, so that 

Pin) = U(n) + S(n)-p(n), 
leading to 

P(2n) = U(2n) + S(2n)-p(2n) = 2Tn + Tn-p(2n) = 3Tn-n-1, n > I 

Equivalent^, 

P(2n+2) = 3Tn+1-(n + D- 1 = ?!a±JMiJl - n - 2 

= 3(n + Dn + 3(n+1)2-2(n+2) 
2 2 

= 3Tn+2n+ I n > 0. 

More easily, we have 

P(2n+1) = U(2n + 1)+S(2n + '$)-p(2n+1) = 2Tn+ p(2n + 1) + Tn - p(2n+1) = 3Tn , 

which finishes the proof. 
We note that the generating function for each sequence given is easily written since the triangular numbers are 

involved, as 

£ Mr* + Vx" = j j ^ 
17=0 

J2 P(2n+2)x n _ 4 - X2 

(1 - xp 
n=0 


