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The purpose of this note is to announce the following formulae, where H0 and Ht are chosen arbitrarily and 
Hn = Hn„i + Hn„2 for /i > 1: " 

n f 

V HkHk+2m+i =J H2m+n+1-H2
m+1 + HoH2m+1, i f " is even 

k=0 \Mm+n+1-H}n , if /̂  is odd k=0 

(*) 
Hm+nHm+n+1 - HmHm+1 + H0H2m, if n is even 
'm+nHm+n+1-Hm-lHm , if /? is odd 

These results may be established by first proving the corresponding formulas for Fibonacci numbers and then ex-
panding the expressions on the left side of (*) by using the well-known relation 

Hn = Fn-lHo+FnHl -

To prove (*) for Fibonacci numbers the method of generating functions is utilized. Using Binet's formulae for 
Fibonacci and Lucas numbers, one finds that 

V ^ ra „ " - F"> +[Fm-lFm + (-Dm]x-F2
m„1x

2 ^ „ _ FmHx - Fm.jX2 

2 - FnHnX <1+x)(1-3x + x*) a n d ^ FnFnHn* " <1+x)(1-3x+x*) ' 
n=0 n-0 

Moreover, 

i (i ««~y - (t A(± '.^A- lT^s^n • 
n=0 \ n=0 f \ n-0 f ^ n=0 f 

and with the methods of Gould [1] one can derive the bisection generating functions 

V F2
 vn _Fm + [(-Dm-3Fm-2Fm]x + F^2x

2 

/ , l~2n+mX ; 
n=0 (1-x)(1-7x+x2) 

/ 2 n \ r r 2 

'-Fm^x2 

and „ >2n+1 

E l V F F 1 v " - Fm+3X ~ Fm-P 

n \ h FkFk+mY ~ <1-x)(1-7x + 
n=0 \ k=0 / 
oo /' 2n+l \ 

n=0 \ k=0 J 

X2) > 

Fm+1- Fm-3X 

(1-x)(1-7x+x2) 
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The proof of (*) for Fibonacci numbers is then completed by observing the relationships among these generating 
functions. For example, 

oo oo oo 

E ( F2n+m+2 ~ Fm ) Xn - E F2n+m+2*n " Fm E * " 
n=0 n=0 n^O 

_ Fm+2 * [(-Dm+2-3FmFm+2lx + F^x1 F*m 

(1-x)(1-7x + x2) 1~x 

= (F"+2 -F2
m) + [(-Dm - 3Fm Fm+2 + 7F2

mlx 

(1-x)(1-7x+x2) 

_ F2m+2 ~ F2m-2X 

' (1-x)(1-7x+x2) 

and hence, 

The other three cases are similar. 

°° / 2/7+7 V 

E l E FkFk+2m+l)xn 

n=0 \ k=0 f 

2n+1 

E FkFk+2n+1 = F2n+m+2-~Fn 
kH7 
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[Continued from P. 342.] 

Proof. The corollary is known to be true for (b/-1) = I Then the following results can be calculated: 
If 

(a.aJ-1) = 1, 
then 

Wla.aJ-D = -1, then 

[Continued on P. 349.] 

(axa2/b) = I 

(-ava2/b) = (-1/b), 

(axa2/-b) = 1, 

(~axa2/-b) = -(-1/b); 

(axa2/b) = /, 

(-axa2/b) = (-1/b), 

(axaj-b) = -1, 

l-axaj-b) = (-1/b). 


