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In this paper, we discuss paiindromic compositions of integers n using members of general sequences of positive 
integers as summands. A palindromic composition of n is a composition that reads the same forward as backward, as 
5 = 1 + 3 + 1, but not 5 = 3 + 1 + 1. We derive formulas for the number of palindromic representations of any inte-
ger/7 as well as for the compositions of /?. The specialized results lead to generalized Fibonacci sequences, interleaved 
Fibonacci sequences 1, 1,2, 1, 3, 2, 5, 3, 8, 5, •••, and rising diagonal sums of Pascal's triangle. 

1. GENERATING FOfyCTIOf^S 

Let 

be any increasing sequence of positive integers from which the compositions of a non-negative integer/? are made. 
Then let 

Fix) = xa° +xai + -+xak + - , 

which will allow us to write generating functions for the number of palindromic compositions Pn as well as the num-
ber of compositions Cn made from the sequence 

Theorem 1.1. The number of compositions Cn of a non-negative integer n is given by 

E Cn*n
 f__F(x) -

n=0 

Proof. Now CQ = 1 and Ct = C2 =. - = £a 0 - / = 0 because the numbers 1, 2, 3, •», aQ - 1 have no composi-
tions, while the number 0 has a vacuuous composition using no summands from the given sequence. Next, 

Cn ~ £V?-30
 + Cn-ax

 + '" + Cn~as
 + '" > 

where Cj=Q i f / < 0. Thus, 
oo oo 

£ Cnx
n = (xa° + xa^ + xa* +:-) J^ Cnx

n+1 

n=0 n=0 

from which Theorem 1.1 follows immediately. 
Theorem 1.2. The number of palindromic compositions Pn of a non-negative integer n is given by 

n=0 

or 

E P vn _ / + F(x) 

360 
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V p y" = F(x) + Fix2) 
^ nX 1-F(x2) " 

Proof. First, we can make a palindromic composition by adding an a^ to each side of an existing palindromic 
composition. Thus 

Pn = Pn-2a0 + Pn-2ax + - + Pn~2as + - , 

where Pj = 0 if / < 0. Thus 
oo 

E Pnx
n = x2aUP0+Pxx + P2x

2 +>-)+x2aUP0 + Plx + P2x
2 +-) 

n=0 

+x2a*(P0 +Pxx+P2x
2 + -) + »>+(xa* +xa* +xa* +-), 

where the terms xa° + x6*1 +xa* + — account for the single palindromic compositions not achievable in the first 
form. Theorem 1.2 is immediate. 

We note that the function 
F(x) = xa° +xa* + >-< + xas + -

is such that 
oo 

Ff(xi = £ R(n)xn > 
n=0 

where R(n) is the /-part composition of n; 
oo 

F'(x2) = J2 R*(n)xn, 
n=*0 

where R*(n) is the 2/-part palindromic composition of/?;and 
oo 

F(x)F'(x2) = J2 R**(n)xn, 
n=0 

where R**(n) is the (2i + /Apart palindromic composition of/?. 
Next, we find the number of occurrences of a^ in the compositions and in the palindromic compositions of/?. 
Theorem 1.3. l&\An be the number of times a^ is used in the compositions of/?. Then 

V A xn = x 

La Mn* [1-FM12 • 
n=0 

Proof. It is easy to see that 
An ~ ^ /7-a0

 + ^n-ax
 + '" + ^n-a^^ Cn-a^ + ' " # 

where Cj and Aj = 0 if / < 0. 

£ Anx
n = (xa° +xa^ +~. + xa* + .~) Z Anx

n+xak £ Cnxn 

n=0 n=0 n^O 

from which Theorem 1.3 follows after applying Theorem 1.1. 
It follows from Theorem 1.3 that the total use of all a^ is given by all integer counts in the expansion of 

Fix) 
H-F(x)]2' 
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Since the number of plus signs occurring is given by the total number of integers used minus the total number of 
compositions less the one for zero, the number of plus signs has generating function given by 

Fix) Fix) = F2(x) 

[I-FMJ* 1-FM n-F(x)]* -
Theorem 1.4. The number of occurrences of ak in the palindromic compositions of n, denoted by Un, is 

given by the generating function 

xak ,.2x^(1 +Fix)) _ f - u n 
J-Fix2) [1-F(x2)]2 ^ n ' 

Proof. To count the occurrences of ak in the palindromic compositions of n, 

Un = Un^a, +Un-2ax + ~' +(Un-2ak+2Pn-2ak) + $ = J V x U ^ 
| 0 ifn ?ak 

the one being for the single palindrome akt and Uj and Pj = 0 for/ < 0. 

J^ Unx
n = x2a»(U0 +Ulx + U2x

2+-)+x2ai(UQ + Uxx + U2x
2+»>) 

n=0 

+ ~< + x2as(UQ + Uxx + U%x2+^) + >~ + xak 

2ak 

n=0 
+ 2x2ak J^ pn*n • 

Therefore, applying Theorem 1.2 and simplifying yields Theorem 1.4. 
As before, from Theorem 1.4 we can write the total number of integers in all palindromic compositions displayed 

in the form of the generating function 
Fix) !2F(x2)(1 + F(x)) 

7-Fix2) ft-Fix2)]2 ' 

Now, in getting all the plus signs counted we need only subtract the generating function for the palindromic com-
positions of all n except zero. Thus 

Fix) ,2F(x2)(1 + F(x)) Fix2) +Fix) s F(x2)[1 + 2F(x) + Fix2)] 
1~F(x2) ff-F(x2)]2 1-Fix2) [1-Fix2)]2 

Z APPLICATIONS AND SPECIAL CASES 

The results of Section 1 are of particular interest in several special cases. 
When the summands are 1 and 2, Fix) = x + x2 gives the result of [1] that the number of compositions of n is 

Fn+i, the (n + 1)st Fibonacci number, since by Theorem 1.1, 

n=Q n=0 

where we recognize the generating function for the Fibonacci sequence. Theorem 1.2 gives the number of palin-
dromic compositions as 

oo 

(2 2) Y* P xn = 1 +x+x2 

[ L l ) ^ FnX 1-(x2+x«) 
n=0 

which is the generating function for the interleaved Fibonacci sequence 1,1, 2, 1, 3, 2, 5, 3,8, 5, 13, 8, 21, —. 
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When the summands are 1, 2, and 3, Fix) = x + x2 + x3 in Theorem 1.1 gives the generating function for the 
Tribonacci numbers 1, 1r 2, 4,7, ••<, Tn+3 = Tn+2+Tn+i + Tn,a$ 

(2-3> E <?»*" - ,_,_',,_,, - E r^,*" 
while the number of palindromic compositions from Theorem 1.2 becomes 

CO 

1 +X+X2 + X% (2.4) 2>„*l,« ^ 
/?=0 

X2 - X 4 - X 6 

which generates the interleaved generalized Tribonacci sequence 1,1, 2, 2, 3, 3f 6, 6,11,11, 20, 20, - . 
When the summands are 1, 2, 3, —, k, then F(x) = x + x2 + —+xk in Theorem 1.1 gives the generating function 

for a sequence of generalized Fibonacci numbers i F* J defined by 

F*^ = /%*_, * F ^ „ 2 +... + F*, Ff = 1, F* « 2n'1f n « 2, 3,A.,~, K 

so thdt Cn = FX+i-
When the summands are the positive integers, F(x) - x +'x2 +x3 + ---x/H - x) in Theorem 1.1 gives the num-

ber of compositions of n as-?"""3\n > 1, since 
oo 

(2.5) " ^ " " 1 1~X E c**n = - ^ 
,7=0 7 - j-^ 

1-2x 
X 

which generates 1, 1, 2, 4, 8, 16, 32, - . Applying Theorem 1.2 to find the number of palindromic compositions 
gives the generating function for the sequence 1, 1, 2, 2, 4, 4, 8, 8, - , or, Pn = 2* , /?-0, 1, 2, - , where [x] 
is the greatest integer function. 

Taking odd summands 1, 3, 5, 7, ••<, and using Fix) = x+x3 +x5 +X1 + ~>*x/(1 -x2)in Theorem 1.2to find 
the number of palindromic compositions of n again gives the generating function for the interleaved Fibonacci se-
quence 1,1,2, 1, 3, 2, 5, 3, 8, 5, 13, 8, 21, •-, while Theorem 1.1 gives the number of compositions of n as 

(2.6) £ Cnx" L - - jJf^ - E (Fn+1 - W*" 
n=0 1 - JZT^r n=*0 

so that Cn = Fn. 
If we use the sequence 1, 2, 4, 5, 7, 8, -•, the integers omitting all multiples of 3, then 

Fix) = (x+x2)+(x*+x5) + (x1 +x*)+- = (x + x2)/(1 -x3) 

yields the number of compositions of n as 

(2.7) y Cnxn = 1— = -
n=0 7-T^xT 

1-X3 

X -Xz -Xs 

so that, returning to Eq. (2.3), Cn = Tn+1 - Tn„2, where Tn is the nth Tribonacci number. 
If we take 

Fix) = x2 +x3 +x4 +x5 +.- - -^— , 
1 -x 

the number of compositions of n using the sequence of integers greater than 1 is given by 
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(2.8) T Cnxn = 7 — - — i _ . « V Fn_lX" 
*-~* f X2 1-X-X2 *—< 

so that £,? = Fn-1- Applying Theorem 1.2 we again find the number of palindromic compositions to be the inter-
leaved Fibonacci sequence, but with the subscripts shifted down from before, as 1, 0, 1, 1, 2 , 1 , 3, 2, 5, 3, 8, 5, —. 
(Note: Zero is represented vacuously; one not at all.) 

The sequence of multiples of k used for summands leads to 
Ffx) = xk +x2k +x3k + »• = xk/(1 - xk), 

which in Theorem 1.1 gives us 

(2.9) E cnxn = j ^ £ r - / + £ 2m~1*km 

so that the number of compositions of n is-?'77 if n = km or 0 if n ^ km for an integers. 

3. SEQUENCES WHICH CONTASN REPEATED ONE'S 
Compositions formed from sequences which contain repeated one's also lead to certain generalized Fibonacci 

numbers. We think of labelling the one's in each case so that they can be distinguished. These are weighted 
compositions. 

First, 1, 1, and 2 used as summands gives F(x)=x+x +x2 so that 
oo oo 

(3-D £ Cn*n = i_2l_x, = £ pn+ix" 
n=0 n=*0 

so that Cn = Pn+1 where pn is the nth Pell number defined bypx - 1,p2 = 2 , p n + 2 - 2Pn+i +Pn- Applying Theo-
rem 1.2, we find that we have the generating function for the sequence 1, 2, 3,4, 7, 10, 17, 24,41, —, which is a 
sequence formed from interleaved generalized Pell sequences, having the same recursion relation as the Pell sequence 
but different starting values. 

In general, if we use the sequence 1,1, 1, —, 1, 2 (tone's) as summands, F(x)=x+x +x + — +x+x2 = kx+x2 

in Theorem 1.1 gives 
oo oo 

<3-2> E Cn*" = t-J-x* = £ P*n+ix" > 
n=0 n=*0 

where 
p* = I p* = k, p*+2 = kp*+1 -f-p*. 

Thus, the number of compositions of/? formed from this sequence is Cn- p*+ 7. The number of palindromic com-
positions is again a sequence formed from two interleaved generalized Pell sequences, having the same recursion re-
lation as pp but different starting values. The starting values for one sequence are 1 and k + 1; for the second, k and 
k2. Thus, the interleaved sequence begins 

/, k, k + 7, k2, k2 +k+1, k3 +k,k3 +k2+2k+ 1, k4 +2k2, - . 
One other special case using repeated ones is interesting. When the sequence 1, 1, 1,1, 2 is used as summands, 

/ s V F3(n+1) xn 

n=0 n-0 

using the known generating function [2 ] , where Lk is the k Lucas number, 
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(3-4) — ^ — = T. Fknx», 
1-Lkx + {-1)kx2

 n=0 

Actually, as a bonus, this gives us two simple results; F3k is always divisible by 2, since Cn is an integer, and, from 
the recursion relation Cn+2 = 4Cn+i + Cn, we have 

F3(n+2) = 4F3(n+1) + F3n. 

But, we can go further. Equation (3.4) combined with Theorem 1.1 for odd k gives us 
oo oo 

(3-5) £ Cnx
n = yzTT^T = E (Fk(nH)/Fk)x

n, *odd, 
n=0 n=0 

so that 
Cn = Fk(n+1)/Fk 

when Lk repeated ones and a 2 are used for the sequence from which the compositions of n are made, k odd. Since 
Cn is an integer, we prove in yet another way that Pk divides Fkn [ 3 ] , as well as write the formula 
(3.6) Fk(n+2) = LkFk(n+1) + Fkn, k odd, 

4. APPLICATIONS TO RISING DIAGONAL SUIVSS IN PASCAL'S TRIANGLE 
The generalized Fibonacci numbers of Harris and Styles [ 4 ] , [5] are the numbers u(n;p,q) which are found by 

taking the sum of elements appearing along diagonals of Pascal's triangle written in left-justified form. The number 
u(n; p,q) is the sum of the elements found by beginning with the left-most element in thenth row and taking steps 
of p units up and q units right throughout the array. We recall that 

(4.1) J1ZL*E1— = ym u(n;p,q)xn . 

Note that/? = g = / yields the Fibonacci numbers, or, Fn+i = u(n; 1,1). Now, Eq. (4.1) combined with Theorem 1.1 
gives us the number of compositions of n from the sequence i 1, p + 1 I as 

oo oo 

(4.2) £ cnx" = r, = £ u(n;p,1)xn 

n=0 / -x -x n=ig 

so that Cn = u(n; p,1), the sequence of diagonal sums found in Pascal's triangle by taking steps o fp units up and 1 
unit right throughout the array. Note again that/? = 1 gives us the Fibonacci sequence. 

Suppose that the compositions are made from the sequence of integers greater than or equal to p + 1. Then 
F(X) = xP+1+xP+2+xP+3 + ... = xp+1/(1-x), 

so that Theorem 1.1 gives 
oo oo 

<4-3> E cn*n = 1—r = 1~*"T, = £ [u(n;p,1)-u(n-1;p,1)]xn 

n=0 1 _ X— ' x x n-0 
1~x 

and the number of compositions of n becomes 

Cn = u(n;p, 1) - u(n - 1;p, 1). 

Again the special case/? = / yields Fibonacci numbers, with Cn = f „ _ / . 
Now, if the compositions are made from the sequence 1,p+2,2p+ 3, — or the sequence formed by taking every 

(p + 1)st integer, 
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F(x) = x+xp+2+x2p+3+x3p+4 + >.> = x/(1-xp+1) 

in Theorem 1.1 gives 

/ -
/ 

X 

1-x"+1 

= 
1 

1-

-X 

-x^i 

-xp+1 (4.4) £ C«Kn = 

n=0 

so that 
Cn - u(n;p,1)-u(n-p- 1;p,1). 

Again, p = 1 yields Fibonacci numbers, being the case of the sequence of odd integers, where Cn - Fn, as in (2.6). 
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A NOTE ON TOPOLOGIES ON FINITE SETS 

A. R, MITCHELL and R. W. MITCHELL 
The University of Texas at Arlington, Texas 76010 

In an article [1] by D. Stephen, it was shown that an upper bound for the number of elements in a non-discrete 
topology on a finite set with n elements is 2(2n~2) and moreover, that this upper bound is attainable. The follow-
ing example and theorem furnish a much easier proof of these results. 

Example. Let b, c be distinct elements of a finite set A^with n(n > 2) elements. Define 
T =\ A c X\b <EA or c £ A\ . 

NowF isa topology on X and since there are 2n~1 subsets of X containing/? and 2n~2 subsets of X which do not 
intersect j b,c j we have 

2n~1 + 2n~2 = 3l2n~2) 
elements in F. 

Theorem. If 2 is a non-discrete topology on a finite set X, then 2 is contained in a topology of the type de-
fined in the example. 

[Continued on Page 368.] 


