ON AN INTERESTING PROPERTY OF 112359550561797752809

J. L. HUNSUCKER and CARL POMERANCE University of Georgia, Athens, Georgia 30602

In solving Problem 301 by J. A. Hunter in [1] an interesting Fibonacci property arose. The problem was to find the smallest positive integer with the property that when the digit 1 was appended to both ends, the new number was 99 times the old. If x is the original number then the problem can be restated by solutions x, k to

$$
\frac{10^{k+2}+1}{89}=x \quad \text { and } \quad\left[\log _{10} x\right]=k
$$

where [\ldots] is the greatest integer function. The problem can of course be generalized to other bases. In particular in the base $g, g-1$ plays the role of 9 in the base 10 , so the original problem becomes
Generalized Problem: Find x, k if

$$
g^{k+2}+g x+1=\left(g^{2}-1\right) x
$$

or equivalently

$$
x=\frac{g^{k+2}+1}{g^{2}-g-1}, \quad \text { and } \quad k=\left[\log _{g} x\right]
$$

It is an easy inequality argument to show for a positive integer $g \geqslant 3$ that

$$
g^{k}<\frac{g^{k+2}+1}{g^{2}-g-1}<g^{k+1}
$$

Thus the condition $\left[\log _{g} x\right]=k$ can be dropped for $g \geqslant 3$ and we will do so for the remainder.
By long division,

$$
x=\frac{g^{k+2}+1}{g^{2}-g-1}=\left(\sum_{i=1}^{k+1} g^{k+\beta-1} F_{i}\right)+\frac{g F_{k+2+F_{k+1}+1}}{g^{2}-g-1}
$$

where F_{i} is the $i^{\text {th }}$ Fibonacci number ($F_{1}=F_{2}=1$, etc.). So all the solutions for a given g are found by finding the k 's for which

$$
\frac{g F_{k+2}+F_{k+1}+1}{g^{-}-g-1}
$$

is an integer.
Solving the equation

$$
\frac{g^{k+2}+1}{g-g-1}=x
$$

for x and k is equivalent to solving the congruence $g^{t} \equiv-1\left(\bmod g^{2}-g-1\right)$ for $t \geqslant 2$. As a matter of fact, since $10^{22} \equiv-1(\bmod 89)$ we see that for $g=10$, all solutions x are given by

$$
x=\frac{10^{22+44 j}+1}{89}
$$

The first such x is 112359550561797752809 .

In the remainder of this paper we will always use p to denote an odd prime. It is easy to show that $g^{t} \equiv-1$ (mod p^{a}) has a solution t if and only if $\operatorname{ord}_{p} g$ is even, where ord ${ }_{p} g$ means the order of g in the multiplicative group of integers modulo p. In this case t is an odd number times $1 / 2 \operatorname{ord}_{p} g$. Then using the Chinese Remainder Theorem, the fact that ord ${ }_{m} g=$ I.c.m. $\left\{\operatorname{ord}_{p^{2}} g ; p^{a} \| m\right\}$, and the fact that ord ${ }_{p a} g$ is a power of p times ord ${ }_{p} g$, it is an elementary argument to show for m odd and $(g, m)=1$ that $g^{t} \equiv-1(\bmod m)$ has a solution t if and only if there is an $x \geqslant 1$ such that $2^{x} \| \operatorname{ord}_{p} g$ for each $p \mid m$, in which case t is an odd number times $\frac{1}{2}$ ord ${ }_{m} g$. Compiling this result with our earlier discussion and the fact that $g^{2}-g-1$ is always odd leads to the following theorem.

Theorem 1. Let $g \geqslant 3$ be an integer. Then the following statements are equivalent.
(a) The Generalized Problem has a solution x, k.
(b) There is an integer k such that

$$
\frac{g F_{k+2}+F_{k+1}+1}{g^{2}-g-1}
$$

is an integer.
(c) There is an integer $x \geqslant 1$ such that $2^{x} \| o r_{p} g$ for every prime $p \mid g^{2}-g-1$.

If these statements hold, then $k+2$ is any odd number times $1 / 2$ ord $g^{2}-g-1 g$.
The question naturally arises as to how many bases g are there for which the Generalized Problem has a solution. Towards this end let A denote the set of those $g \geqslant 3$ for which the Generalized Problem has a solution and let

$$
B=\{g \geqslant 3: g \notin A\}
$$

Let p be a prime of the form $3(\bmod 4)$ which divides $h^{2}-h-1 \quad$ some h. Then p also divides $(-h+1)^{2}$ $-(-h+1)-1$. Furthermore

$$
\left(\frac{h}{p}\right)\left(\frac{-h+1}{p}\right)=\left(\frac{-1}{p}\right)=-1,
$$

where (\cdots / p) is the Legendre symbol. So either

$$
\left(\frac{h}{p}\right)=1 \quad \text { or } \quad\left(\frac{-h+1}{p}\right)=1
$$

Let a_{p} stand for h or $-h+1$ according as to which Legendre symbol is 1 . Then if $g \equiv a_{p}(\bmod p)$ we have that $p \mid g^{2}-g-1$ and that $\operatorname{ord}_{p} g$ is odd (since

$$
g^{(p-1) / 2} \equiv a_{p}^{(p-1) / 2} \equiv\binom{\frac{a_{p}}{p}}{p} \equiv 1(\bmod p) \quad \text { and } \quad \frac{p-1}{2}
$$

is odd). On the other hand if p is any prime of the form 1 or $4(\bmod 5)$ then $p \mid h^{2}-h-1$ for

$$
h=\frac{1}{2}(1+b)(1+p)
$$

where $b^{2} \equiv 5(\bmod p)$. (Note that

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=1
$$

so b exists.) Therefore if $p \equiv 1$ or $4(\bmod 5)$ and in addition $p \equiv 3(\bmod 4)$, i.e., $p \equiv 11$ or $19(\bmod 20)$, then there is an a_{p} such that for every $g \equiv a_{p}(\bmod p)$ we have ord g is odd and $p \mid g^{2}-g-1$. Let $P=\{p: p$ is a prime of the form 11 or $19(\bmod 20)\}$ and let $C=\left\{g \geqslant 3: g \equiv a_{p}(\bmod p)\right.$ for some $\left.p \in P\right\}$. Then Theorem 1 implies $C \subset B$. Furthermore, Dirichlet's theorem on primes in arithmetical progressions implies

$$
\sum_{p \in P} \frac{1}{p}=\infty
$$

It then follows that the asymptotic density of C, and hence B, is 1 . We have thus proved the following theorem.
Theorem 2. The probability of a random choice of a base $g \geqslant 3$ not yielding a solution tothe Generalized Problem is 1 .

In light of this theorem it seems that the choice of the base 10 in the problem as originally stated was a wise choice! We leave as an entertaining problem for the reader the question of the identity of the bases g less than 100 for which there is a solution.
We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If $g \equiv 3(\bmod 4)$ is a prime and $p=g^{2}-g-1$ is also a prime, then $p \equiv 1(\bmod 4)$ and

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{g}\right)=\left(\frac{-1}{g}\right)=-1 .
$$

Hence $g^{t} \equiv-1(\bmod p)$ has a solution and $g \in A$. We note that Schinzel's Conjecture H [2] implies there are infinitely many primes $g \equiv 3(\bmod 4)$ for which $g^{2}-g-1$ is also prime. Hence if this famous conjecture is true it follows that our set A is infinite.

REFERENCES

1. J. A. Hunter, Problem 301, J. Recreational Math., 6 (4), Fall 1973, p. 308.
2. A. Schinzel and W. Sierpinski, "Sur certaines hypothèses concernant les nombres premiers," Acta Arith. 4 (1958), pp. 185-208.
[Continued from P. 330.]

*

$$
\left(\frac{(-1 / a)}{(-1 / b)}\right)=(-1)^{(a-1)(b-1) / 4}=1
$$

if and only if $a \equiv 1(\bmod 4)$ and $/$ or $b \equiv 1(\bmod 4)$.
If $A= \pm 1$ and $B= \pm 1$ are logical variables, then the sixteen functions of those variables are given by $\pm 1, \pm A, \pm B$, $\pm A B$ and $\pm(\pm A / \pm B)$. This is a result that cannot be obtained with the definition $(-1 /-1)=1$. If $A=(-1 / b)$ and $B=(-2 / b)$, then the logical functions of A and B give the congruence of b modulo 8 . For example,

$$
(A / B)=(-1)^{\left(b^{3}-b^{2}+7 b-7\right) / 16}=1
$$

if and only if $b \equiv 1,3$ or $5(\bmod 8)$. The function -1 is a null function which cannot occur.
If $b= \pm p_{1} p_{2} \cdots p_{k}$ with p_{i} not necessarily distinct, and n is the number of p_{i} for which $(a / p)=-1$, then

$$
(a b)=\left(\frac{(a /-1)}{(b /-1)}\right)(-1)^{n}
$$

Theorem. If $a b \equiv 1(\bmod 2)$ and $(a, b)=1$, then

$$
(a / b)(b / a)=\left(\frac{(a /-1)}{(b /-1)}\right)\left(\frac{(-1 / a)}{(-1 / b)}\right)
$$

In other words,

$$
(a / b)(b / a)=1
$$

if and only if $((a$ is positive and/or b is positive) and $(a \equiv 1(\bmod 4)$ and $/$ or $b \equiv 1(\bmod 4)))$ or $(a$ is negative and b is negative and $a \equiv-1(\bmod 4)$ and $b \equiv-1(\bmod 4))$.
Proof.

$$
((-1 / a) /(-1 / b))=-1
$$

if and only if
[Continued on P. 336.]

$$
\begin{aligned}
& (-1 / a)=(-1 / b)=-1 ; \\
& ((-1 /-a) /(-1 / b))=-1
\end{aligned}
$$

