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In solving Problem 301 by J. A. Hunter in [1] an interesting Fibonacci property arose. The problem was to find 
the smallest positive integer with the property that when the digit 1 was appended to both ends, the new number 
was 99 times the old. If x is the original number then the problem can be restated by solutions x, ktQ 

jjg—L = x and [Sog10x] = K 

where [••• ] is the greatest integer function. The problem can of course be generalized to other bases. In particular in 
the base g,g-\ plays the role of 9 in the base 10, so the original problem becomes 

Generalized FrobSem: Find x, k if 

gk+2+gx+l = (g2-1)x , 
orequivalently 

ak+2 + 1 

g2~g~i 

It is an easy inequality argument to show for a positive integer#> 3 that 

gk < J^+L < / * * . 
g-2-g- 1 

Thus the condition [ l o g ^ ] = k can be dropped for# > 3 and we will do so for the remainder. 
By long division, 

nk+2 
= JL 

92~g 

;th 

+ 1 - f V * „k+h1p \ . 9Fk+2*Fk+1+1 

-1 \fc J g2-g-1 
where F; is the / Fibonacci number (F j = F2 = 1,. etc.). So all the solutions for a given g are found by finding the 
k'% for which 

gFk+2 + Fk+1 + 1 

9 -9- 1 
is an integer. 

Solving the equation 

g -g- 1 

f o r * and k is equivalent to solving the congruence gf = - 1 (mod g2 - g- / ) f o r f > 2. As a matter of fact, since 
1022 = - 1 (mod 89) we see that for#= 10, all solutionsx are given by 

W22+44j+1 
x W ' 

The first such x is 112359550561797752809. 
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In the remainder of this paper we will always use/7 to denote an odd prime. It is easy to showthat#f = - 1 (mod 
pa) has a solution t if and only if ordp# is even, where ordp# means the order of g in the multiplicative group of in-
tegers modulo p. In this case t is an odd number times 34 ordp#. Then using the Chinese Remainder Theorem, the 
fact that ordm#= l.c.m. j ordpag:Pa\\m I , and the fact that ord a# is a power of p times ordp#, it is an elementary 
argument to show for m odd and (g,m) = 1 that#f = - 1 (mod m) has a solution t if and only if there is an* > 1 
such that 2x||ordp#for each/?|/77, in which case t is an odd number times 1/2ordm# Compiling this result with our 
earlier discussion and the fact thatg2 -g- 1 is always odd leads to the following theorem. 

Theorem 1. letg > 3 be an integer,, Then the following statements are equivalent. 
(a) The Generalized Problem has a solutions k. 
(b) There is an integer k such that 

gFk+2 + Fk+l + l 
92-g-1 

is an integer. 
(c) There is an integer* > 1 such that 2*||ordp#for every prime/?^2 -g- I 

If these statements hold, then k + 2 is any odd number times 14 ord^-^/gL 
The question naturally arises as to how many bases g are there for which the Generalized Problem has a solution. 

Towards this end let/! denote the set of those #> 3 for which the Generalized Problem has a solution and let 
B = \g > 3:g £A\ . 

Let p be a prime of the form 3 (mod 4) which divides h2 - h - 1 some h. Then p also divides (-h + V2 

- f-h + 1) -1. Furthermore 

(n*?) •{!)•-'• 
where (— /p) is the Legendre symbol. So either 

Let ap stand for h or -h + 1 according as to which Legendre symbol is 1. Then if g = ap (mod p) we have that 
P \g2 ~ 9 ~ 1 and that ordp# is odd (since 

g(p-1)/2 s g(p-l)/2 s ( fe. ) s 1 (modp) and IfL 

is odd). On the other hand if/? is any prime of the form 1 or 4 (mod 5) then/?|/?2 - h - /for 

where/?2.5 5 (mod p). (Note that 

h = 1~(1+b)(l+p), 

(in*)-* 
so h exists.) Therefore if p = 1 or 4 (mod 5) and in addition/? = 3 (mod 4), i.e.,/? = 11 or 19 (mod 20), then there 
is an ap such that for every g^ap (mod/?) we have ordp# is odd and/?|/7/2 -g- 1. Let P= i p:p is a prime of the 
form 11 or 19 (mod 20) | and let C = i g > 3:g = ap (mod p) for some/? &P\. Then Theorem 1 implies C c B. 
Furthermore, Dirichlet's theorem on primes in arithmetical progressions implies 

7 _ 

P^P 
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It then follows that the asymptotic density of C, and hence B, is 1. We have thus proved the following theorem. 
Theorem 2. The probability of a random choice of a base# > 3 not yielding a solution tothe Generalized Prob-

lem is 1. 
In light of this theorem it seems that the choice of the base 10 in the problem as originally stated was a wise choice! 

We leave as an entertaining problem for the reader the question of the identity of the basest less than 100 for which 
there is a solution. 

We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If g = 3 (mod 4) is a 
prime and p - g2 - g - \ is also a prime, then p = 1 (mod 4) and 

[i)-(t)-{?)•-'• 
Hence gl = - 1 (mod p) has a solution and g<= A. We note that Schinzel's Conjecture H [2] implies there are infin-
itely many primes # = 3 (mod 4) for which g2 - g - 1 is also prime. Hence if this famous conjecture is true it follows 
that our set A is infinite. 
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[Continued from P. 330.: 

I (-1/h) 1 ( 1J (a-1)(h-1)/4 _ = / 
if and only i fa = 1 (mod 4) and/or£ = 1 (mod 4). 

If A = ±1 and B = ±1 are logical variables, then the sixteen functions of those variables are given by ±1, ±A +B 
±AB and ±(±A/±B). This is a result that cannot be obtained with the definition (-1/-1) = I If A = (-1/b) and 
B - (-2/b), then the logical functions of A and B give the congruence of b modulo 8. For example 

(A/B) = (_f)(b'-b*+7b-7)/16^ , 

if and only if b = 1, 3 or 5 (mod 8). The function - 1 is a null function which cannot occur. 

Wb = ±piP2 -Pk with pi not necessarily distinct, and n is the number of /?,- for which (a/p) =-1, then 

Theorem. If ab = 1 (mod 2) and [a,h) = l , then 

<»»»•( ffltm) • 
In other words, 

(a/bHb/a) = 1 
if and only if ((a is positive and/or b is positive) and (a = 1 (mod 4) and/or b = 1 (mod 4))) or (a is negative and b is 
negative and a = - 1 (mod 4) and b = - 1 (mod 4)). 

Proof. 
((-1/a}/(-J/b)t = -1 

if and only if 
(-1/a) = (-1/b) = -1; 

[Continued on P. 336.] ((-1/-a)/(-1/h)) = - / 


