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In solving Problem 301 by J. A. Hunterin [1] an interesting Fibonacci property arose. The problem was to find
the smallest positive integer with the property that when the digit 1 was appended to both ends, the new number

was 99 times the old. If x is the original number then the problem can be restated by - solutions x, k to
10K*2 4+ 1 _ -
g5 "X and [log,,x] = &,

where [-- ] is the greatest integer function. The problem can of course be generalized to other bases. In particular in
the base g, g — 1 plays the role of 9 in the base 10, so the original problem becomes
Generalized Problem: Find x, & if

+2+gx+7= (y‘?—l)x,
or equivalently

k+2
=4 “*1 =
X , and k = [loggx] .
g%g-1 I
It is an easy inequality argument to show for a positive integer g > 3 that
k+2
+ 1 k+1
y — <4 .
Sg7mg-1

Thus the condition [loggx] = k can be dropped forg > 3 and we will do so for the remainder.
By long division,

k+1
\ - k+2 Z gk+"‘7F ng+2+Fk+z +1
g2 g- 7 g2-g-1 ’

where F; is the i Fibonacci number (F, =F, =1, ete.). So all the solutions for a given g are found by finding the
k's for which

GFkt2t Frrq 1

9 -g-1
is an integer.
Solving the equation
Al
g —g-1

for x and k is equivalent to solving the congruence g* = —1 (mod g — g — 7) for ¢ > 2. As a matter of fact, since
10%* = —1 (mod 89) we see that for g = 10, all solutions x are given by
22+44)
X = 10 1
89
The first such x is 112359550561797752809.
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In the remainder of this paper we will always use p to denote an odd prime. [t is easy to show thatgts—'l (mod
p?) has a solution ¢ if and only if ordy,g is even, where ord, g means the order of g in the multiplicative group of in-
tegers modulo p. In this case ¢ is an odd number times % ord, g. Then using the Chinese Remainder Theorem, the
fact that ord,g = L.c.m. { ordpag;panm } , and the fact that ordpag is a power of p times ordpg, itis an elementary
argument to show for m odd and (g,m) = 1 thatyt = —1 (mod m) has a solution ¢ if and only if there isanx > 1
such that 2xnordpg for each p|m, in which case ¢ is an odd number times % ord,,g. Compiling this result with our
earlier discussion and the fact that g* — g — 1 is always odd leads to the following theorem.

Theorem 1. Letg = 3 be an integer. Then the following statements are equivalent.

{a) The Generalized Problem has a solution x, k..

(b) There is an integer & such that

gFk+2t Frrr # 1
@ -g-1
is an integer.

(c) There is an integer x > 1such that 2%||ard, g for every prime plg* — g — 7.
If these statements hold, then & + 2 is any odd number times %2 ordg2 574

The question naturally arises as to how many bases g are there for which the Generalized Problem has a solution.
Towards this end let A denote the set of those g > 3 for which the Generalized Problem has a solution and let

B=-{g>3.‘g§éA}.
Let p be a prime of the forry 3 (mod 4) which divides > — / — 1 some h. Then p also divides (—h + 1)?

— (—h + 1) —1. Furthermore
(/lv )('i’i) = (:l) = -1
p N p p !
where (- /p) is the Legendre symbol. So either

(8)-r w (22

Let ap stand for /1 or —A + 1 according as to which Legendre symbol is 1. Then if g =a, (mod p) we have that
p|g* — g~ 1 and that ord, g is odd (since
gl 172 - a;ﬁ‘o'”/z = ( %’l) = 1(modp) and /’-———;7

is odd). On the other hand if p is any prime of the form 1 or 4 (mod 5) then p|#* — h — 7 for

h = g (1+b)(1+p),

5Y-[2)=

( o ) ( 5 ) "

so b exists.) Therefore if p =1 or 4 (mod 5) and in addition p = 3 (mod 4), i.e., p = 11 or 19 (mod 20), then there
is an ap such that for every g =a, (mod p) we have ordy,g is odd and p|g* — g — 1. Let P= ] p: p isa prime of the

form 11 or 19 (mod ZO)i and let €= § g > 3:g=ap (mod p)forsomepeP}. Then Theorem 1 impliesC c 8.
Furthermore, Dirichlet’s theorem on primes in arithmetical progressions implies

where 5> = 5 (mod p). (Note that

7=oo
)RR
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It then follows that the asymptotic density of £, and hence B, is 1. We have thus proved the following theorem.

Theorem 2. The probability of a random choice of a base g > 3 not yielding a solution tothe Generalized Prob-
lemis 1.

In light of this thearem it seems that the choice of the base 10 in the problem as originally stated was a wise choice!
We leave as an entertaining problem for the reader the question of the identity of the bases g less than 100 for which
there is a solution.

We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If =3 (mod 4) is a
prime and p = g* — g — 1is also a prime, thenp =1 (mod 4) and '

( g.. ) = ( p_ ) = ( —_._7 ) = _7_
p g9 g
Hence g' = —1 (mod p) has a solution and g € A. We note that Schinzel’s Conjecture H [2] implies there are infin-

itely many primes g =3 (mod 4) for which g> — g — 1 is also prime. Hence if this famous conjecture is true it follows
that our set A is infinite.
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[Continued from P. 330.]
(—1/a) \ _ (a-1)(b-1)/4
((—7/1:) ) = -1 Va1
if and only if a =1 (mod 4) and/or 6 = 1 (mod 4).

If A =#7 and B = #7 are logical variables, then the sixteen functions of those variables are given by #7, £4, #B,
+AB and £(+A/+B). This is a result that cannot be obtained with the definition (—7/=7) = 7. If A = (— 1/b) and
B = (=2/b), then the logical functions of A and B give the congruence of 5 modulo 8. For example,

(A/B) = (_”(b’-b2+7b-7l/76'~= 7

ifand only if 6 =1, 3 or 5 (mod 8). The function —1 is a null function which cannot occur.
Ifb=2#p1p2 - Pk With p; not necessarily distinct, and n is the number of p; for which (a/p) = — 7, then

= (a/~1) _qn
(ab) (W_”)( 0.
Theorem. fab=1 (mod Z)and (ab) = 1, then

(a/b)(b/a) = ( %—:% )( 5_:_%_)))

In other words,

(a/b)(b/a) = 1

if and only if ((a is positive and/or b is positive) and (2 =1 (mod 4) and/or 5 =1 (mod 4))) or (a is negative and b is
negative and a =—1 (mad 4) and 6 =—1 (mod 4)).

Proof.
((—1/a)/(-1/b)) = 1

if and only if
(—1/a) = (-1/b) = -1,

[Continued on P, 336.] ((=1/~a)/(=1/b)) = 1



