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Among the well known Fibonacei identities we have
Fmtn = Fm+1Fn+ FmFp-1

which may be written as
Fm+1Fn—F1Fmin = FnFp-1 .

In this form, we see a property which is common among Fibonacci and Lucas identities. Namely, that the sum of
the subscripts of the first product £,,+7F, is identically equal to the sum of the subscripts of the second product

F7 Fm+n .
What general identities do we have with this property? How does this property relate to the reducibility of a given

form?
It is with these questions that we are principally concerned.

Definition 1. Forevery 7 <i<m, let the domain of n; be the set of integers. Then we let
P = { polynomials inn,, n,, -+, Ny, with integral coefficients } .
For convenience in deriving general Fibonacci and Lucas identities for the forms
FiFg# FpFy, Lilg#Llplg, Filgz Fplg,
where £, g, h, k € P, with the property that f + g =h + k, we first express / and & in terms of fand g.

Lemma 1. |1, g, h, k € Psuch that f+g=h + k, then there exists f,, f,, g,, g, € P such that
f,+f, =f g, %9, =g fotg =h and f,+g, =k
Proof. Let
f1Eh/ fg Ef'—h, _01501 ngg,
clearly,
g, fx +g1 = h.

1l

fi, 1. 9.,9, €P and fi+f, =1 g, %9,

but, by hypothesis,
k=1, +g9, =k qged

l

ftrg=h+k =1~f-h+g
Theorem 1. Letf g, h, k< Psuchthat f+g = h+Kk, then
FrFg=FnFi = (=1)7" T FrpFri .

Proof. By hypothesis,
f+g = h+k and fghk P

Hence, by Lemma 1, there exist f,, 7,, g,, g, € P such that

f, +f2 = f 9,79, =4 fi+tg, =h, f2 +g, = k.

Then, clearly,
Fng —FpFy = fo +f, F91+92 - fo *9, Ff2+92 '
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Using the Binet definition

n
( Fn =%¢‘3{%’, where n< [Integers], a=1 +2\/§

.

g - 7—2\/5 )

we have

(af1+f2 “Bf‘+f’ ) (a91+92 —Bg1+y2 )
a-f a-p
(aﬂ*gl —gh*a )( o279 _ ght9, )
- a-f a-p
_ (a.fl +f,+9,+9, Bfl -I-fz‘]'g‘*f*g2 _ a,fl +f2ﬁgl +g, +6f1 +f, +91+92)
- fa—B)> :
(a,fl +f,+9,+9, _ﬁf1 +glaf2+g2 _ afl +91ﬁfz +g, +Bf’ +g,+f,+g, i
- fa—BJ '
(_Bfl +f2agl *9, 4 afl +glﬂf2+5’2 —_ afl +f2591 *9, 4 ﬁfx *9, afz +92}
(a— g/
_ szagx (_fo a9z +ah B892+ afzﬁg, (_alegz + fo aJ2)
- (a-B)
(_ﬂfxagz +af16g2)(8f2aq1 _,afzﬁglj -
(a—B)
(aB )92 (-39 +a'1792)(8a)% (872791 — a’2791)
(a—g)*
(aB)9:*9:*(a"1 792 _ g"1~92)ig" 91 _ g1
a—B)

= (—7)9:119,*1
= (~1)7 7% fo’ngfz'gx

Ffl +f, Fgl 9, ~ Ffl *9, Ffz 19, =

il

il

But
9,79, =g and f,—g, =(f,+Ff)-(f,+g,) =Ff—k and f,—f =(f+ H)]-(f+g)=F-h.

Thus, by substituting . . .
(~1)979  Fe o Fr g = (=17 TFeyFrp = (-1 TFepFrp  qed.

Theorem 2. Letf g h k< Psuchthat f+g= h+k, then

(a) Lilg—Lplg = 5(—1)9Fpp Frui
and
(b) Fflg— Fplg = (—-f/g”/:f_hlf_k .

Proof.  The proof of 2(a) and 2(b) is virtually the same as that of Theorem 1 (where L, =a” + 3}
Corollary 1. Letf g h k< Psuchthatf+g= h+k Then

FFg— FnFi = — “’—-fﬂ?“—éi’ﬁ‘-} .
Proof. Compare Theorems 2(a) and 1.

EXAMPLES AND APPLICATIONS

The degree of freedom offered by Theorems 1 and 2 together with the identity given in their hypothesis is large
indeed. We will endeavor, with some examples, to indicate that degree of freedom.
EXAMPLE 1. By [1, p. 7], a general Turan operator is defined by

Tf = Tyflx) = flx +u)fix +v) — fix)f(x +u +v).
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"“For the Fibonacci numbers it is a classic formula first discovered apparently by Tagiuri (Cf. Dickson [4, p.
4041 ) and later given as a problem in the American Mathematical Monthly (Prablem 1396) that
TnFn = FnsuFptv— FnFptuty = (—I)nFqu et
This is immediate from Theorem 1.
letf=n+u, g=n+v, h=n and k= n+u+v. Clearly,

fghkepP and f+tg = h+k.
Thus, applying Theorem 1, we have

FrtuFnty = FaFtate = (=1 F ntajon Flneu)tntury) = (1) FuFoy.
Now using the well known identity (— 7)’"+7Fm = F.p, yields

(—7}n+v+7FuF-v = (‘7)n+V+1(—7)_V+1FuFV = (- ﬂnFqu;
the desired result.
EXAMPLE 2. By Thearem 2(a),

Lilg—Lply = (~1)95F fopy Fric
iffg h ke Pandf+g=h+k Thentoo,f—k= h-gandf-h=k-g,
Substituting, we obtain Lilg—Lplg = (~1)95Fkgrp-g,

a trivial but equivalent form of Theorem 2(a).
Another equivalent form of Theorem 2(a) is

Lilg—5FpFy = (- 7}9Lk_gl.h..g .
To obtain this equivalent form, we write
f+{~g) = (h—g)+(k-g).

Clearly,
f(=g) th—g) (k—g) € P;

hence, Theorem 2(a) may be applied to these new polynomials, yielding,
Ltk -g) = Lin-g)Lik=g) = (=T 9F(n-g)(-p) F tk~g)~(-g)
then,
(~1)9L¢lg— L(h-g)L(k-g) = (~1)96FpFi = Lilg—5FnFy = (~1)9Lk-glp—g .
Similarly, Theorems 1 and 2 may be put into several other equivalent forms.
It would be natural to ask what F¢Fg + Fp Fr would yield, subject to the condition
f,g h kP and f+g = h+k,

with a proof analagous to that of Theorem 1. The result is, in at least one form,

FeFg+ FnFi = Eﬂ%’fﬁ.‘l_ #(=1)9%1 ﬂfﬁ#‘l .

However, this form is easily derived with the following method.
EXAMPLE 3.

ftg=h+k = (0)+(f+g) = h+k,
by Theorem 2(a),



292 GENERAL IDENTITIES FOR FIBONACCI AND LUCAS NUMBERS [DEC.

Now we use Theorem 2(a) to find an expression for F¢Fg and obtain

Lyl (~1)9 7 L pl
FiFg - h5k - 5f h L ek

Adding these identities produces
FeFg+ FnFy = 52@—”3" +(-1)9*7 éf—’;i’—"
Similarly, we find sums LfLg+ LpLg by using Theorem 2(b). Also, other sums with various equivalent forms may

be found.
APPLICATION TO FIBONACC! AND LUCAS TRIPLES
Application of Theorems 1 and 2 to the Fibonacci and Lucas triples [2], generated by R. T. Hansen, allow Theo
rems 1 and 2 to be written in equivalent summation form for fixed integers.
Theorem 3. Let A, B be fixed integers; then
B—1
FaFg =9 (~1)8" T"KEp piokes
K=0

A-1
Falg = Z (~1)8" K popo2icer
=0
A-2
B+K B+K
Lalg = Z (~1)""La-gamrny+ Y, (=17 Lag-2x -
K=0 K=0
Proof. See [2] and directly apply Theorems 1 and 2.
Clearly, from these forms, the summation equivaients of Theorems 1 and 2, for fixed integer A, B, C, D such that
A+ B=_C+ D, may be obtained as immediate corollaries. We do not list these identities.
FURTHER APPLICATION OF THEOREMS 1 AND 2

We now apply Theorems 1 and 2 to find simple subscript properties between identically equal Fibonacci and

Lucas products.
Lemma 2. Let f,

Proof.

,g € Psuchthat f# Zandg # 2. |f Fr= Fg, then |f| =|g|.

=Fg= |Fl = |Fgl = Fin = Fiy.

Clearly,
{FN}‘”_O, N #2 N € [Integers],

Figi and |f| # |g|is a contradiction to the fact that { Fn $;=0' N#2,

il

is a strictly increasing sequence. Then F|g
is strictly increasing. Thus,

Y

Fr=Fg

Theorem 4. Givenf g, h k< P. If FsF,
ever

Fm = Flgl = |f} = lgl Q.E.D.
= FpFy, then |[f{=|h|and |g|=|k]|, or |f| =|g| and |g| = |k| when-
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i 1gl, 1al 141, & {02},
Proof. If FeFg = FpFy , then
(1 |FeFgl =1FnFil = FinFig = FiniFik -
Since £, g, i, k = P, they are functions of n,, n,, -, and np, . Let nf for 1 <7 < m be an arbitrary set of fixed val-
ues of n; for 1 <7 < m, respectively. Then £, g,, #,, k, are the corresponding fixed integers. Assume W.L.0.G. that
L£0 #lg,) > 1h) +1k)]
and that {n,f § is such that
FARVARVARIS
are not 2 or 0. Clearly, there exist K such that K > 8, K € [Integers] and
(2) FARIPARERV ARSI A ¢
By Theorem 1,
Fit, 1Figy = Finy Fik, 1ok = (=19 T Fi L Fit ik 140 = 0
if and only if
£l ~1n,l =0 or lel —tle,l +K) = 0.
Without loss of generality, assume that
LEl=1nl =0=1fl =1a,l.
Thenby (2), lg,| = 1k,| +K
Suppose K # 0, then

Fif \Fig,1 = Fin \Fie, 1+ # Fin, 1Fik i
by Lemma 2,
Thus, if
FirFig = Fi) Fik g
it is required that K = 0. Thus,
£, = 1h,l and lg,l =1kl .

Further, since the selection of n; was arbitrary with the conditions of the thearems hypothesis, its conclusion holds,
QLE.D.
Note that the condition .
LA, 1l a1kl & {2t

is not really any restriction, practically speaking. Thatis £, = £, so if one agrees always to write 7, as £, we could
require only that| A, lgl, |al, 1kl & %D} in the hypothesis of Theorem 4,

Lemma 3. letf,g € PitLy=Ly, thenlfl =lgl.

Proof. Construct an argument similar to Lemma 2.

Theorem 5. Letf, g h k. P\ LiLg=LpLg, thenlfl =lhl andlgl = [4], orlAl =1kl andlgl =1al,
Proof. Construct a proof analogous to Theorem 4 by using Lemma 3 and Theorem 2(a).

Theorem 6. Givenf g h ke P. f Frly=Fplg, thenlfl =1hl andlgl =1kl, whenever|A | 5] é£a2§.

Proof. Construct a proof analogous to Theorem 4 by using Theorem 2 (b). Informally speaking, Theorems 1, 2, 4,
5 and 6 seem to suggest that an algebraic structure for Fibonacci identities, based on the subscripts, can be formed.
If the reader is interested in investigating this, he will be more successful in using the following form of Theorem 1:

_ [ 7}91 79,1
Ffl’sz F91+92 Ffz+g1 Ff2+gz = (1) 7% Ffl'ngfz"g;’
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where
fghk.f,f, 9,9, €P
and
f,+f, =1, 9,79, = 4 fi*g, = h, f,+g, = k
and

f+g =h+k.
Further, note that if we let
0= {FpFs|lRScP and R+S=ftg}

then clearly
Ffl +f, Fgl g, Ff1+91 Ff2+g2 € Q.
Also,
= 9,19, 17 9, 19,1
Ffl-;-fz F91+gz = (-1 Ff1+f2 F—g‘-g, = (~1)91792 Ff1+f2F‘91 :"-_g2 eq
and then

(~1)9:792 1 F o Fe g < Q.
The reader may enjoy investigating further in this or other directions.

SOME ADDITIONAL IDENTITIES
Theorem 7. Letf g h< Psuchthat f=g+h. Then,

(a) Fr—Fglp = (-1)9Fpg

(b) Li—Lglp = (-1)7Lpy
Ly (-1)9L4,..

(c) 3 - FoFn = =50

Proof. By using the Binet definition we have

Frm Foly = @=0" _ a?=p7  a"+f" _ (af=B") (@™ - %" + a%" - §7)

“a=-8 a-p 7 a-B

By hypothesis f=g + h, hence by substituting g + / for f in the above expression and simplifying we have

Fr—Fglp = &_@_ﬂah —a%"
a-f
= (a9 I=8"0) _(_yjop, .
The proofs of (b) and (c) are similar. Q.E.D. a-8
Although not included, theorems corresponding to those in this paper may be developed for Fibonacci and Lucas
triples as well. (The author did develop the FyFpLx — FjFmFp, form.) Clearly, the proofs for these, which are vir-

tually the same as for Theorems 1 and 2, soon become cumbersome. We leave it to the reader to develop these
to suit his needs.
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