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This note is motivated by the following problem originating in combinatorial logic. Let f and g be the functions
on the set of positive integers defined by #(x) = 3x and g(x) = [x/2], where /r] denotes the greatest integer less than
or equal to the real number . Let I" denote the collection of all composite functions formed by repeated applica-
tions of Fand g. For which positive integers k does there exist # € I" such that 4(7) = k? For example, if f g and "
are defined as above, then

fl1) = 3, (1) = 9, (1) = 27, gf3(1) = 13, fgf*(1) = 39 and gfgrf*(1) = 19.
Thus, given any number from the collection {3, 9, 27, 13, 39, 39} there exists an # € I such that /(7) is the
given number. The following thearem verifies that every positive integer can be obtained in this manner,

Before stating the theorem, the following conventions are adopted. The set of non-negative integers, the set of pos-
itive integers and the set of positive real numbers are denoted by #, N and R+, respectively. If fand g are functions
on /N to A, then the composite function g-7 is defined by g-f(x) = g(f(x)) and the functions obtained by reneated
applications of £ n-times, will be denoted by 77, If r is a real number then the greatest integer less than or equal to
ris denoted by /r/. Finally, two integers a and ¢ are said to be power related provided there existm,ne N such
that a™ =¢".

Theorem 1. Leta# 1, c# 1 be positive integers. Let & € &V and let fand g be the functionson V to /V de-

fined by f(x) = ax + b and g(x) = [x/c]. If aand c are not power related and if u,v € N'*, then there exist m,n € N*
such that g (u) = v.

Using thistheorem with a =3, b = 0 and ¢ = 2 and noting that 2 and 3 are not power related leads to the previously
mentioned result.

A related theorem will be proved from which Theorem 1 will follow. Three lemmas will be employed. Indications
of proof will be provided for all three.

Lemma 1. letace N*, a#1, c# 1 The collection { a"/c™:mne N } is dense in R* if and only ifa
and ¢ are not power related.

Prooﬁ This result is well known and is generally considered to be folklore; a guide to its proof is given.

Using the continuity of the logarithm and results found on pages 71—75 of [1], the following statements can be
shown to be equivalent. .

{a) The collection { a"c™:nme N { isdensein R*.

(b) The collection gn —mllog ¢/loga) : n,m & N } n R* is dense in A™,
(e) The quotient (log c/loga) is irrational.
(d) The numbersa abd ¢ are not power related.

Lemma 2. Let aand b be positive integers with the additional property that the collection { a’/c™:nme IV}
is adense subset of B”, Thenifn, € A%, the collection { a"/c™:n > n;nmelN ; is also a dense subset of A™.

Proof. The subset { (a"/c™ )0 nm & /II} c { a"/c™:n > nynme /V} is dense in A%,

Lemma 3. Letabe N, wherea# Oanda# 7. If Fis defined on N by f(x) = ax + b, then
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ix) = ax + ‘21':_11 b= a" ( (a- Hztbi(r—a'" )

foralln e A"

Proof A straightforward induction argument establishes the lemma.

Theorem 2.  Let a and ¢ be positive integers neither of which is 1. Let # € AL Let # denote the function on &
defined by flx) = ax + b. {f a and ¢ are not power related, then for all v € A, the collection

Alu) = éﬂ-”—)-:m,n e N {
" f

is dense in A%,
Proof. Letr € A* and let € > 0 be given. The quotient

ria—1)

(a—Thu+b(1—-2a")
decreases as /7 increases and has limiting value

rla=1)_
fa—Thu+b ’
asn — - . Choose n,, such thatn > n, implies
€
ra—1) , Zfa—1) a—1)

~TJu+b’ (a—Tu+h ~ -
{a—1)u (a—Tlu+b (3 1Jutb(1—a")
Then forn >n,,
rfa—1) < frele/2)a—1) _(r+ella=1) _ (r+elfa—1)
- fa—1ju+bh fa—Tu+b -n
fa—Tu+b(1—2a") fa~Tu+b(1-2a")
Since # and ¢ are not power related, Lemma 1 yields the fact that { a"e™ :mpnelN } is a dense subset of A”.
By Lemma 2, it is possible to cheose m,, n, such thatn, >n, and

r+(&2a=1) _ a" _ (r+e)la—1)

fa—Tu+b M fa—Th+b"

It follows that

rla—1) < (r+elfa—_1)

fa—Nu+b(1-a"") ™  fa—1Tu+b(1-a"™")

and

;< f;_;’_: (a—7)u;£l(7;-a'"‘) <rie.
By Lemma 3,

re o) o pye
¢

Hence Afu/ is dense in A™.
An additional lemma will expedite the proof of Theorem 1.

Lemma 4. Let ¢ € N*. Let g be defined on B by gfx/ = [x/c]. lfv.e N and if r is a real number such
that ve" <r <(v+ 1)c”, then g”(r) = v.

Proof. The proof is by induction onn. if n =1, thenve <r < (v+ 7)c impiies r = vc + 5, wheres € R*ors=0
and 0 <5 < ¢ It follows that

g(r)=[lic—:—i:! =[v+s—] and *fc-< 1.
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k 1 k+1

Hence g(r) = v. Suppose gk(r)= v whenever veX < r < (v+ 1)ck. Suppose, in addition, that ald

Then

<ry <fv+1e

) = yk( [%J ) and vek < Cc‘!- < v+ 1)k .

It follows that

k r

ve® < ?° < (v+1)ck.

Hence by the induction hypothesis
0 = - ([ ]) -

To prove Theorem 1, employ Theorem 2 to obtain positive integers » and m such that

n
v < Blu) < yeq
cm
and apply Lemma 4.
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Continued from page 22, bk

We can add any quantity B to each term:

x(a+B)™ +y(b+B)™ + (x +y —2)ax +by +B)™ = (x +y—2)B™ +y(ax + by + B — b)™ + x(ax + by + B — a)™
(wherem =1, 2).
A special case of a Fibonacci-type series is
1m 27 3"
Consider the series when m = 2:
(1) 1 4 9 16 25

where Fn = 3(Fn-1 = Fr-2) # Fo_g
[we obtain our coefficients from Pascal’s Triangle], i.e.,
(x+3)2 = 3[(x+2)* — (x +1)*] +x*.
| have found by conjecture that
17— 4M 4 _ gM  9T 49M 16" = 0" — 127 127 127 T4 7T + 77 4157
(wherem = 1, 2).
[1 hope the reader will accept the strange —0"” for the time being.]
If we express the series (1) above in the form
a b 3(c—b)+a etc.,

our multigrade appears as follows

d" =36 +3c™ ~ [3(c—b)+a] ™ = ~0" — 3(3c — b+ a)™+ 3(2c — 3b +2)™ + [3c — b)] ™
(wherem =1, 2).
We could, of course, write the above as

x2)T = 3[(x + 1] + 3[(x + 2] ™ — [3f(x + 2)* — (x + 1)3] +x3]™

= 0" - 3[x* —4(x+1)? +3(x +2R]M+3[x* - 3(x +1)2 — 4fx #2217+ [3(x +2)2 — (x + 1)2]™
(wherem =1, 2).

Continued on page 82,



