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Definition 1. Given a sequence of numbers 

(1) a0 ax a2 - an -

we call first differences of (1) the numbers of the sequence 
D1 D1 Dl ... D1 
u0 ux u2 un 

with 
1 

Dn = an+1-3n-

By recurrence we define the differences of order k of (1) as the first differences of the sequence of differences of 
order k — 1 of (1), namely the numbers of the sequence 
(2) Dk

0 D) Dk
2 ». Dk -

with 
(3) Dk

n=Dk
n-+\-D

k
n-

1 . 

Observe that (3) is also valid for /r = 1 if we rename an = D®. 

Definition 2. The sequence (1) is arithmetic of order k if the differences of order k are equal, whereas the differ-
ences of order k - 1 are not equal. It follows that the differences of order higher than k are null. 

Proposition 1. Given a sequence (1), if there exists a polynomial p(x) of degree k with leading coefficients such 
that an = p(n) for n = 0, 1, 2, — then the sequence is arithmetic of order k and the differences of order k are equal 
to k!c. 

Proof. Letp(x) = cxk + bxk~1 + - (the terms omitted are always of less degree than those written). Then 

an = cnk + hnk~1 + -
hence 

D1
n = an+1-an = c[(n+1)k-nk]+b[(n+1)k-1 -nk-1] + - * cknk~1+ -

therefore, for the first differences we have a polynomial/?/ (x) = kcxk~1 + - o f degree k - 1 and leading coefficient 
kc such that D1

n= pi(n). Repeating the same process k times we come to the conclusion that Dn =pt<(n) for a poly-
nomial Pk(x) of degree zero and leading coefficient k!c; hence Dn = klcior n = 0, 1, 2, —. 

EXAMPLE. The sequence 

(4) 0 1 2k 3k - nk 

for k a positive integer is arithmetic of order k and Dn = k!. 

Proposition 2. For any sequence (1), arithmetic or not, we have 

Dk = [k0)
an+k- ( * ) an+k-1 + {k

2) *n+k-2+"± ( £ ) *>n 

The proof is straightforward using induction on k with the help of (3). 
In particular for the sequence (4) we have 
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(5) Dk = [k0)(n+k)k- ( * ) (n + k-1)k+[k2yn+k-2)k-..-± ( £ ) " * , 

where the coefficient of nk"' (i = 0, 1, 2, - , k) is 

( ' .)(?)'-(*)(?)»-' ' ' (#?)»-*'-••• ' ' U.) (?) ' ' * (£)(?)• ' 
(we assume that 0 ' = 0for / = 7, £ -., £ a n d 0 ° = / / Hence the coefficient of nk"f (i= 1,2, •-, k) in (5) is 

( * ) [ (5)* / - ( * ) r * - , ; / + (J) r * -^- - ± ( * -») / ,J 
and the coefficient of /7* 

( S ) - ( ? ) ' ( S ) — ( i ) -
Since we know that Dn = k! we have the remarkable equalities: 

» ( £ ) - ( * 0 * ( 5 ) — * ( £ ) - » 
(which is a very well known fact since it is the development of (1 - 1 r ) . 

(6) (ii) ( J ) k'- ( * ) (k- 1)'+[ * ) fk-2)'- ...± ( fcl , ) /'' - 0 

iori=t,2,-,k- 1 

(7) (iii) ( £ ) * * " ( * / ) ' * - " * • (5) ^ - ^ - - ± ( ^ - ? ) '* = *•' 

A fourth identity can be obtained from (5) with n = 0 and (21), namely 

£ f-tf' (*,-Mft-/-/;* = ft-w(*' 
which can alsp be written in the form 

(iv) {ko)kk+1-[))(k-^)k+1^[k
2)(k-2)k+1--±{k

k
1) 1k+1 = kl[k+

2
1) 

k! 

I! 
Starting with k + 1 numbers AQ, A /, —, Ak we form the "generalized" triangle of Pascal 

AQ At A2 Ak 

A0 A0+At Ax+A2 - Ak 

A0 2AQ+AX AQ+2AX+A2 AX+2A2+AZ - Ak 

A0 3AQ+AX 3A,+3AX+A2 

where each number is the sum of the two above. We observe that the coefficient of A0 \nthQhth entry of then* 

row is ( n
hZ \ ) ;the coefficient of Ax is ( n

hZ
1
2 ) - and the coefficient o f / I * is ( h

 n_ ~k
 1_ 1 ] . (We set f " 

= 0 whenever/ >n o r / < 0.) Therefore the hth entry of the/7f/? row is 

In particular, for the triangle over the k+ 1 differences^,, Dl
Q, D\, •••, Dk of the sequence (1) assumed to be arith-

metic of order k, in view of (3) and taking into account that 0% = D% = — we have 
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aQ D\ 0 J . . . 0 * 

aQ a, D\ D\ -Dk
x 

a0 S\ a2 D\ D\-..D* 

aQ S* SI a, D\ Q\ . . . 0 * 

^ S\ SI SI a4 D\ D*...Dk
4 

where 
SI = a0 S} = S}_7 +a, and Sk

n = Sk
n_1+S^1 . 

Since in this triangle an is the {n+lf entry of the (n+1)th row, we have 

«» • » - ( « ) » . * ( » - / ) ^ + ( „ l 2 ) ^ + - + ( » - * ) °k» 
or, equivalently, 

do) • « - » . * ( ? ) ° i * ( a ) °5* -* (* ) ^ • 
Observe that if the sequence (1) is not arithmetic we still can construct a "generalized" triangle of Pascal starting 

with an infinity of entries in the first row. 
an Di Dl - D" .» 

and then instead of (10) we would have 

>n".+ (n
1)Dl + (n

a)'n+~+(n
n)D?. 

Proposition 2. If (1) is an arithmetic sequence of order k, we can find a polynomial p(x) of degree k such that 
an = p(n). 

Proof. P(x) = aQ + ( * ) D\ + ( * ) Dl +'-+(x
k) D* 

w i t n - * / * i / . , i 
I x \ = x(x ~ V '" (x - i + 1) 
\'" / // 

is obviously a polynomial of degree k and in view of (10), an = p(n). 
Forthe partial sum S^a0 +ax + — + an wehaveaformulasimilarto (10). In fact, observing thatS/, is the (n+1) 

entry of the (n+2)th row in the "generalized" triangle of Pascal, we have 

or, equivalently, 

in) sh- ["+1) .^["V) DI+.-+[I+
+\)D* . 

Therefore S}, = q(n), where q W i s a polynomial of degree k + 1. This was to be expected, since obviously the sequence 
S\, S\, -,S},,-\s arithmetic of order k + 1. 

EXAMPLES. If we apply (11) to the sequences of type (4) with k= 1, 2, 3,4 we obtain the well known formulas 

1. 0+1+2 + ~. + n=(n+
1

1) 0+[n+
2

1) T = n-1jSL 

2. 0 + J * + 2 * + - + n> • ( n +
1

1 ) 0 + { n + 2 1 ) 1 + [ " V ) 2 = nJnJj^!LLl) 

3. 0+V+2*+~ + n* = ( " + ' ) 0+{n+
2

1) l+[n+
3
1) 6+(n+

4
1)6 = 1* + W + "* 
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0+ P +2* +-+ n4 6ns + 1§n4 + 10n3 -n 
"30 

We now know that the sum 

111 

Sk(n) = 0+ 1k + 2k + - + nk 

is given by a polynomial in n of degree k + 1. The question arises, how to find out the coefficients of this polynomial? 
Obviously the coefficient of/?0 is zero, since Sk (0) = Q, and the coefficient of n + is 1/(k + 1) as we can see from 

(11). Hence the polynomial form for Sk(n) is 

(12) Sk(n) = 1/(k+l)nk+1 +honk+hrn
k~1 + - + hk.1n 

for some coefficients/?^, hi, —, /?£-?• Since Sk (n) - Sk(n - 1) = n , we have 

^[nk+1-(n^1)k+1]+h0[n
k-(n-1)k]+h1[n

k-'1-(n-1)k-1] + -

+ hi[n
k~i-(n- 1)k-'] + - + hk-1 = nk 

and taking coefficients of the different powers of /?, we have the following equations: (the first is an identity, the 
rest form a linear system of k equations in k unknowns, which permits to compute recursively /?#, hff •••, hk+i). 

r 

(13) 

TM*;')-(?)*»-» 
F M V ' H S M V ' ) * ' " 

1 *77(^')-(?)*»'0:;)»'-"*(*-r'K'-» 

From the second equation we obtain hQ =
 1/2, independent of k. If we set 

(14) A / ' (^b, h2~[k
2)b2:.hk„1=[k

k_i)bk-l 

and observe that 

:th, we can write the iw equation in (13) in the form 

m(f)-*(?)*(f)c.)"-(f)(i)^-(f)(/f)v-*(f)(,z,)^-» 
or, equivalently: 

TW-H'i)b'-{,2)b*+-A,i)bi+-"*[i-i)b'-'-0-
Hence the system (13), after omitting the first two identities reduces to: 
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(15) < 777- j*C, )» ' - ( i )»^- i ( ; )» / -* ( , i , )*M"> 

f*7-HiMsV-*(*->N<-«-
We will call Bernoulli numbers the numbers bu b2, - . The Bernoulli numbers have over the numbers bu hv -

the advantage that they do not depend on k, as we can see from system (15). Equation (14) permits to calculate for 
each k the h's in terms of the b's. 

Proposition. The*even Bernoulli numbers are null. 
Proof: Writing n = 1 in (12) we have 

On the other hand, the last equation in (13) is 

k+1 2 

Adding and subtracting these two equations, we obtain: 

1 _ L+h1-h2 + "±hk-1 0. 

(16) 

The second equation in (16) can be written 

( $ ) ' 2 * ( J ) * 4 * ~ « « 
where the sum is extended to all the subscripts less than or equal to k- 7. For k = 3 we get62 =0;\ox k = 5, 64 = 0, 
etc., which proves the proposition. 

The first equation in (16) for /r = 3, 5, 7, -yields the infinite system of equations: 
r 

(17) 

3\ u - 1 1 

< 

v 
and for k = 2, 4, 6, ••• the system 

(18) 

I- I 
2 3 

< 1)"*(l)«4-| 
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Subtracting the equations in (18) from those in (17), we have 

(19) 
a _7_ 

3-4 

< 

( S M ; ) * 4 I ) * - T 5 

,k-3 

2 Dk
0'

1 = (k- 1)kL 

Any of the infinite systems (17), (18) or (19) permits to find recursively the Bernoulli numbers with odd subscripts. 
Substituting in (12) the Bernoulli numbers, we express 

Sk(n) = Q±1k + >» + nk 

in the form 

(20) Sk(n) = J L . t t ^ + l n k ' + b 1 ( * )nk-1 + b3(
k
3) n> 

where the coefficients of the different powers of n are products of a combinatorial number of k and a number which 
Hnps nnt denend on A: 

NOTE. If we compute the coefficient of the kth power of n in (11) we have 

(k+1)(k-2) nk. 1 nk-i 

On the other hand for the sequenced, 1 ,2k, — that coefficient is 1/a, and DQ = kl Hence, for this particular sequence 
we have 
(21) 

EXAMPLES. From (10) we obtain: 

b * S l 2 b * = - j 2 0 b*=252 b^=~ m l 

which, substituted in (20) for k = 1, 2, —, 11 yields the formulas: 

1+2 + -+n = ̂  n2 + 1- n 

P+22+- + n2 = \n3 + 1-n2 + 1-n 
3 2 6 

p + 23 +- + n3 = 1- n4 + 1-n3 + 1- n2 

4 2 4 

P +2* +... + n* = I n5 + 1~ n4 + 1- n3 - 1- n 
5 2 3 30 

1*+2*+~ + n* = 1Qn6 + ]2n5+J2n*- JJ"2 

P +26 +- + n6 = l-n1 + I n6 + I n5 - 1- n3 + ~ n 
7 2 2 6 42 

= J__ 
132 

v+2n+... + „•> = 1-n*+ 1-n" + j^n6 - ^ n4 + jj n2 

P+2*+-- + n* = 1-n9 + Lnt + Z-n1 - ^-n5 + I n3 - ^ n 
if 2 3 15 g 30 

V +29 +- + n9 = -L n10 + 1-n9 +^n8- ^ n6 + {n4 - 4K n2 

10 20 

7«o +2"> + ... + n™ = 1- n11 + 1- n10 + | n9 - n1 + ns - ]-n3 + ^ n 

1"+2"+- + n" = ~n"+ l n u + lLnio_1_lns+!1_n6_.!^n4+^n2 
12 Z IZ o b o l d 


