ARITHMETIC SEQUENCES OF HIGHER ORDER

JAMES ALONSO
Bennett College, Greenshoro, North Carolina 27420

I
Definition 1. Given a sequence of numbers
(1) $\begin{array}{llllll}a_{0} & a_{1} & a_{2} & \cdots & a_{n} & \cdots\end{array}$
we call first differences of (1) the numbers of the sequence

$$
\begin{array}{llllll}
D_{0}^{1} & D_{1}^{1} & D_{2}^{1} & \cdots & D_{n}^{1} & \cdots
\end{array}
$$

with

$$
D_{n}^{1}=a_{n+1}-a_{n} .
$$

By recurrence we define the differences of order k of (1) as the first differences of the sequence of differences of order $k-1$ of (1), namely the numbers of the sequence
with
(3)

$$
\begin{array}{rlllll}
D_{0}^{k} & D_{1}^{k} & D_{2}^{k} & \cdots & D_{n}^{k} & \cdots \tag{2}\\
& D_{n}^{k}= & D_{n+1}^{k-1}-D_{n}^{k-1}
\end{array}
$$

Observe that (3) is also valid for $k=1$ if we rename $a_{n}=D_{n}^{O}$.
Definition 2. The sequence (1) is arithmetic of order k if the differences of order k are equal, whereas the differences of order $k-1$ are not equal. It follows that the differences of order higher than k are null.
Proposition 1. Given a sequence (1), if there exists a polynomial $p(x)$ of degree k with leading coefficient c such that $a_{n}=p(n)$ for $n=0,1,2, \cdots$ then the sequence is arithmetic of order k and the differences of order k are equal to $k!c$.
Proof. Let $p(x)=c x^{k}+b x^{k-1}+\ldots$ (the terms omitted are always of less degree than those written). Then

$$
a_{n}=c n^{k}+b n^{k-1}+\ldots
$$

hence

$$
D_{n}^{1}=a_{n+1}-a_{n}=c\left[(n+1)^{k}-n^{k}\right]+b\left[(n+1)^{k-1}-n^{k-1}\right]+\ldots=c k n^{k-1}+\ldots
$$

therefore, for the first differences we have a polynomial $p_{1}(x)=k c x^{k-1}+\ldots$ of degree $k-1$ and leading coefficient $k c$ such that $D_{n}^{1}=p_{1}(n)$. Repeating the same process k times we come to the conclusion that $D_{n}^{k}=p_{k}(n)$ for a polynomial $p_{k}(x)$ of degree zero and leading coefficient $k!c$; hence $D_{n}^{k}=k!c$ for $n=0,1,2, \cdots$.
EXAMPLE. The sequence

$$
\begin{array}{lllllll}
0 & 1 & 2^{k} & 3^{k} & \cdots & n^{k} & \ldots \tag{4}
\end{array}
$$

for k a positive integer is arithmetic of order k and $D_{n}^{k}=k!$.
Proposition 2. For any sequence (1), arithmetic or not, we have

$$
D_{n}^{k}=\binom{k}{0} a_{n+k}-\binom{k}{1} a_{n+k-1}+\binom{k}{2} a_{n+k-2}+\cdots \pm\binom{ k}{k} a_{n} .
$$

The proof is straightforward using induction on k with the help of (3).
In particular for the sequence (4) we have
(5)

$$
D_{n}^{k}=\binom{k}{0}(n+k)^{k}-\binom{k}{1}(n+k-1)^{k}+\binom{k}{2}(n+k-2)^{k}-\cdots \pm\binom{ k}{k} n^{k}
$$

where the coefficient of $n^{k-i}(i=0,1,2, \cdots, k)$ is
$\binom{k}{0}\binom{k}{i} k^{i}-\binom{k}{1}\binom{k}{i}(k-1)^{i}+\binom{k}{2}\binom{k}{i}(k-2)^{i}-\cdots \mp\binom{k}{k-1}\binom{k}{i} 1^{i} \pm\binom{ k}{k}\binom{k}{i} 0^{i}$
(we assume that $0^{i}=0$ for $i=1,2, \cdots, k$ and $\left.0^{0}=1\right)$. Hence the coefficient of $n^{k-1}(i=1,2, \cdots, k)$ in (5) is

$$
\binom{k}{i}\left[\binom{k}{0} k^{i}-\binom{k}{1}(k-1)^{i}+\binom{k}{2}(k-2)^{i}-\cdots \pm\left(\begin{array}{ll}
k & 1 \\
k & -1
\end{array}\right) 1^{i}\right]
$$

and the coefficient of n^{k}

$$
\binom{k}{0}-\binom{k}{1}+\binom{k}{2}-\cdots \pm\binom{ k}{k} .
$$

Since we know that $D_{n}^{k}=k!$ we have the remarkable equalities:
(i)

$$
\binom{k}{0}-\binom{k}{1}+\binom{k}{2}-\cdots \pm\binom{ k}{k}=0
$$

(which is a very well known fact since it is the development of $\left.(1-1)^{k}\right)$.
(6) (ii)

$$
\binom{k}{0} k^{i}-\binom{k}{1}(k-1)^{i}+\binom{k}{2}(k-2)^{i}-\cdots \pm\binom{ k}{k-1} 1^{i}=0
$$

$$
\text { for } i=1,2, \ldots, k-1
$$

(7) (iii)

$$
\binom{k-}{0} k^{k}-\binom{k}{1}(k-1)^{k}+\binom{k}{2}(k-2)^{k}-\cdots \pm\binom{ k}{k-1} 1^{k}=k!
$$

A fourth identity can be obtained from (5) with $n=0$ and (21), namely

$$
\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}(k-1-j)^{k}=(k-1)!\binom{k}{2}
$$

which can also be written in the form

$$
\text { (iv) }\binom{k}{0} k^{k+1}-\binom{k}{1}(k-1)^{k+1}+\binom{k}{2}(k-2)^{k+1}-\cdots \pm\binom{ k}{k-1} 1^{k+1}=k!\binom{k+1}{2} \text {. }
$$

II
Starting with $k+1$ numbers $A_{0}, A_{1}, \cdots, A_{k}$ we form the "generalized" triangle of Pascal
where each number is the sum of the two above. We observe that the coefficient of A_{0} in the $h^{\text {th }}$ entry of the $n^{\text {th }}$ row is $\binom{n-1}{h-1}$; the coefficient of A_{1} is $\binom{n-1}{h-2} \cdots$ and the coefficient of A_{k} is $\binom{n-1}{n-k-1}$. (We set $\binom{n}{j}$ $=0$ whenever $j>n$ or $j<0$.) Therefore the $h^{\text {th }}$ entry of the $n^{\text {th }}$ row is

$$
\begin{equation*}
\binom{n-1}{h-1} A_{0}+\binom{n-1}{h-2} A_{1}+\cdots+\binom{n-1}{n-k-1} A_{k} \tag{8}
\end{equation*}
$$

In particular, for the triangle over the $k+1$ differences $a_{0}, D_{0}^{1}, D_{0}^{2}, \cdots, D_{0}^{k}$ of the sequence (1) assumed to be arithmetic of order k, in view of (3) and taking into account that $D_{0}^{k}=D_{1}^{k}=\cdots$ we have

$$
\begin{aligned}
& a_{0} \quad D_{0}^{1} \quad D_{0}^{2} \cdots D_{0}^{k} \\
& a_{0} \quad a_{1} \quad D_{1}^{1} \quad D_{1}^{2} \cdots D_{1}^{k} \\
& \begin{array}{lllll}
a_{0} & S_{1}^{1} & a_{2} & D_{2}^{1} & D_{2}^{2} \cdots D_{2}^{k}
\end{array} \\
& \begin{array}{lllllll}
a_{0} & S_{1}^{2} & S_{2}^{1} & a_{3} & D_{3}^{1} & D_{3}^{2} & \cdots D_{3}^{k}
\end{array}
\end{aligned}
$$

where

$$
S_{0}^{1}=a_{0} \quad S_{i}^{1}=S_{i-1}^{1}+a_{i} \quad \text { and } S_{n}^{k}=S_{n-1}^{k}+S_{n}^{k-1}
$$

Since in this triangle a_{n} is the $(n+1)^{\text {th }}$ entry of the $(n+1)^{\text {th }}$ row, we have

$$
\begin{equation*}
a_{n}=\binom{n}{n} a_{0}+\binom{n}{n-1} D_{0}^{1}+\binom{n}{n-2} D_{0}^{2}+\cdots+\binom{n}{n-k} D_{0}^{k} \tag{9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
a_{n}=a_{0}+\binom{n}{1} D_{0}^{1}+\binom{n}{2} D_{0}^{2}+\cdots+\binom{n}{k} D_{0}^{k} . \tag{10}
\end{equation*}
$$

Observe that if the sequence (1) is not arithmetic we still can construct a "generalized" triangle of Pascal starting with an infinity of entries in the first row.

$$
\begin{array}{llllll}
a_{0} & D_{0}^{1} & D_{0}^{2} & \cdots & D_{0}^{n} & \ldots
\end{array}
$$

and then instead of (10) we would have

$$
a_{n}=a_{0}+\binom{n}{1} D_{0}^{1}+\binom{n}{2} D_{0}^{2}+\cdots+\binom{n}{n} D_{0}^{n} .
$$

Proposition 2. If (1) is an arithmetic sequence of order k, we can find a polynomial $p(x)$ of degree k such that $a_{n}=p(n)$.

Proof.

$$
p(x)=a_{0}+\binom{x}{1} D_{0}^{1}+\binom{x}{2} D_{0}^{2}+\cdots+\binom{x}{k} D_{0}^{k}
$$

with

$$
\binom{x}{i}=\frac{x(x-1) \cdots(x-i+1)}{i!}
$$

is obviously a polynomial of degree k and in view of $(10), a_{n}=p(n)$.
For the partial sum $S_{n}^{1}=a_{0}+a_{1}+\cdots+a_{n}$ we have a formula similar to (10). In fact, observing that S_{n}^{1} is the $(n+1)^{\text {th }}$ entry of the $(n+2)^{\text {th }}$ row in the "generalized" triangle of Pascal, we have

$$
S_{n}^{1}=\binom{n+1}{n} a_{0}+\binom{n+1}{n-1} D_{0}^{1}+\cdots+\binom{n+1}{n-k} D_{0}^{k}
$$

or, equivalently,

$$
\begin{equation*}
S_{n}^{1}=\binom{n+1}{1} a_{0}+\binom{n+1}{2} D_{0}^{1}+\cdots+\binom{n+1}{k+1} D_{0}^{k} . \tag{11}
\end{equation*}
$$

Therefore $S_{n}^{1}=q(n)$, where $q(x)$ is a polynomial of degree $k+1$. This was to be expected, since obviously the sequence $S_{0}^{1}, S_{1}^{1}, \cdots, S_{n}^{1}, \cdots$ is arithmetic of order $k+1$.

EXAMPLES. If we apply (11) to the sequences of type (4) with $k=1,2,3,4$ we obtain the well known formulas
1.

$$
0+1+2+\cdots+n=\binom{n+1}{1} 0+\binom{n+1}{2} 1=\frac{n^{2}+n}{2}
$$

2.

$$
0+1^{2}+2^{2}+\ldots+n^{2}=\binom{n+1}{1} 0+\binom{n+1}{2} 1+\binom{n+1}{3} 2=\frac{n(n+1)(2 n+1)}{6}
$$

3.

$$
0+1^{3}+2^{3}+\cdots+n^{3}=\binom{n+1}{1} 0+\binom{n+1}{2} 1+\binom{n+1}{3} 6+\binom{n+1}{4} 6=\frac{n^{4}+2 n^{3}+n^{2}}{4}
$$

4.

$$
0+1^{4}+2^{4}+\cdots+n^{4}=\frac{6 n^{5}+15 n^{4}+10 n^{3}-n}{30}
$$

III
We now know that the sum

$$
S_{k}(n)=0+1^{k}+2^{k}+\cdots+n^{k}
$$

is given by a polynomial in n of degree $k+1$. The question arises, how to find out the coefficients of this polynomial? Obviously the coefficient of n^{0} is zero, since $S_{k}(0)=0$, and the coefficient of n^{k+1} is $1 /(k+1)$ as we can see from (11). Hence the polynomial form for $S_{k}(n)$ is

$$
\begin{equation*}
S_{k}(n)=1 /(k+1) n^{k+1}+h_{0} n^{k}+h_{1} n^{k-1}+\cdots+h_{k-1} n \tag{12}
\end{equation*}
$$

for some coefficients $h_{0}, h_{1}, \cdots, h_{k-1}$. Since $S_{k}(n)-S_{k}(n-1)=n^{k}$, we have

$$
\begin{gathered}
\frac{1}{k+1}\left[n^{k+1}-(n-1)^{k+1}\right]+h_{0}\left[n^{k}-(n-1)^{k}\right]+h_{1}\left[n^{k-1}-(n-1)^{k-1}\right]+\ldots \\
+h_{i}\left[n^{k-i}-(n-1)^{k-i}\right]+\cdots+h_{k-1}=n^{k}
\end{gathered}
$$

and taking coefficients of the different powers of n, we have the following equations: (the first is an identity, the rest form a linear system of k equations in k unknowns, which permits to compute recursively $h_{0}, h_{1}, \cdots, h_{k+1}$).
(13)

From the second equation we obtain $h_{0}=1 / 2$, independent of k. If we set

$$
\begin{equation*}
h_{1}=\binom{k}{1} b_{1} \quad h_{2}=\binom{k}{2} b_{2} \cdots h_{k-1}=\binom{k}{k-1} b_{k-1} \tag{14}
\end{equation*}
$$

and observe that

$$
\binom{k-j}{i-j} h_{j}=\binom{k-j}{i-j}\binom{k}{j} b_{j}=\binom{k}{i}\binom{i}{j} b_{j}
$$

we can write the $i^{\text {th }}$ equation in (13) in the form
$\frac{1}{i+1}\binom{k}{i}-1 / 2\binom{k}{i}+\binom{k}{i}\binom{i}{1} b_{1}-\binom{k}{i}\binom{i}{2} b_{2}+\cdots \pm\binom{ k}{i}\binom{i}{j} b_{j}+\cdots \pm\binom{ k}{i}\binom{i}{i-1} b_{i-1}=0$
or, equivalently:

$$
\frac{1}{i+1}-\frac{1}{2}+\binom{i}{1} b_{1}-\binom{i}{2} b_{2}+\cdots \pm\binom{ i}{j} b_{j}+\cdots \pm\binom{ i}{i-1} b_{i-1}=0
$$

Hence the system (13), after omitting the first two identities reduces to:
(15)

We will call Bernoulli numbers the numbers h_{1}, b_{2}, \cdots. The Bernoulli numbers have over the numbers h_{1}, h_{2}, \cdots the advantage that they do not depend on k, as we can see from system (15). Equation (14) permits to calculate for each k the h 's in terms of the $b^{\prime} s$.
Proposition. The even Bernoulli numbers are null.
Proof: Writing $n=1$ in (12) we have

$$
\frac{1}{k+1}+\frac{1}{2}+h_{1}+h_{2}+\cdots+h_{k-1}=1 .
$$

On the other hand, the last equation in (13) is

$$
\frac{1}{k+1}-\frac{1}{2}+h_{1}-h_{2}+\cdots \pm h_{k-1}=0
$$

Adding and subtracting these two equations, we obtain:

$$
\left\{\begin{array}{c}
h_{1}+h_{3}+\cdots=\frac{1}{2}-\frac{1}{k+1} \tag{16}\\
h_{2}+h_{4}+\cdots=0
\end{array}\right.
$$

The second equation in (16) can be written

$$
\binom{k}{2} b_{2}+\binom{k}{4} b_{4}+\ldots=0
$$

where the sum is extended to all the subscripts less than or equal to $k-1$. For $k=3$ we get $b_{2}=0$; for $k=5, b_{4}=0$, etc., which proves the proposition.
The first equation in (16) for $k=3,5,7, \ldots$ yields the infinite system of equations:

$$
\left\{\begin{array}{c}
\binom{3}{1} b_{1}=\frac{1}{2}-\frac{1}{4} \tag{17}\\
\binom{5}{1} b_{1}+\binom{5}{3} b_{3}=\frac{1}{2}-\frac{1}{6} \\
\binom{7}{1} b_{1}+\binom{7}{3} b_{3}+\binom{7}{5} b_{5}=\frac{1}{2}-\frac{1}{8} \\
\ldots \ldots . ~
\end{array}\right.
$$

and for $k=2,4,6, \cdots$ the system
(18)

$$
\begin{gathered}
\binom{2}{1} b_{1}=\frac{1}{2}-\frac{1}{3} \\
\binom{4}{1} b_{1}+\binom{4}{3} b_{3}=\frac{1}{2}-\frac{1}{5} \\
\binom{6}{1} b_{1}+\binom{6}{3} b_{3}+\binom{6}{5} b_{5}=\frac{1}{2}-\frac{1}{7} \\
\ldots . ~
\end{gathered}
$$

Subtracting the equations in (18) from those in (17), we have
(19)

$$
\begin{gathered}
\binom{2}{0} b_{1}=\frac{1}{3 \cdot 4} \\
\binom{4}{0} b_{1}+\binom{4}{2} b_{3}=\frac{1}{5 \cdot 6} \\
\binom{6}{0} b_{1}+\binom{6}{2} b_{3}+\binom{6}{4} b_{5}=\frac{1}{7 \cdot 8}
\end{gathered}
$$

Any of the infinite systems (17), (18) or (19) permits to find recursively the Bernoulli numbers with odd subscripts. Substituting in (12) the Bernoulli numbers, we express

$$
S_{k}(n)=0+1^{k}+\ldots+n^{k}
$$

in the form

$$
\begin{equation*}
S_{k}(n)=\frac{1}{k+1} n^{k+1}+\frac{1}{2} n^{k}+b_{1}\binom{k}{1} n^{k-1}+b_{3}\binom{k}{3} n^{k-3}+\ldots, \tag{20}
\end{equation*}
$$

where the coefficients of the different powers of n are products of a combinatorial number of k and a number which dnes not denend on k.
NOTE. If we compute the coefficient of the $k^{\text {th }}$ power of n in (11) we have

$$
-\frac{(k+1)(k-2)}{2(k+1)!} D_{0}^{k}+\frac{1}{k!} D_{0}^{k-1}
$$

On the other hand for the sequence $0,1^{k}, 2^{k}, \ldots$ that coefficient is $1 / 2$, and $D_{0}^{k}=k!$. Hence, for this particular sequence we have
(21)

$$
2 D_{0}^{k-1}=(k-1) k!.
$$

EXAMPLES. From (10) we obtain:

$$
b_{1}=\frac{1}{12} \quad b_{3}=-\frac{1}{120} \quad b_{5}=\frac{1}{252} \quad b_{1}=-\frac{1}{240} \quad b_{9}=\frac{1}{132}
$$

which, substituted in (20) for $k=1,2, \cdots, 11$ yields the formulas:

$$
\begin{gathered}
1+2+\cdots+n=\frac{1}{2} n^{2}+\frac{1}{2} n \\
1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n \\
1^{3}+2^{3}+\cdots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} \\
1^{4}+2^{4}+\cdots+n^{4}=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n \\
1^{5}+2^{5}+\cdots+n^{5}=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2} \\
1^{6}+2^{6}+\cdots+n^{6}=\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n \\
1^{7}+2^{7}+\cdots+n^{7}=\frac{1}{8} n^{8}+\frac{1}{2} n^{7}+\frac{7}{12} n^{6}-\frac{7}{24} n^{4}+\frac{1}{12} n^{2} \\
1^{8}+2^{8}+\ldots+n^{8}=\frac{1}{9} n^{9}+\frac{1}{2} n^{8}+\frac{2}{3} n^{7}-\frac{7}{15} n^{5}+\frac{2}{9} n^{3}-\frac{1}{30} n \\
1^{9}+2^{9}+\ldots+n^{9}=\frac{1}{10} n^{10}+\frac{1}{2} n^{9}+\frac{3}{4} n^{8}-\frac{7}{10} n^{6}+\frac{1}{2} n^{4}-\frac{3}{20} n^{2} \\
1^{10}+2^{10}+\ldots+n^{10}=\frac{1}{11} n^{11}+\frac{1}{2} n^{10}+\frac{5}{6} n^{9}-n^{7}+n^{5}-\frac{1}{2} n^{3}+\frac{5}{66} n \\
1^{11}+2^{11}+\ldots+n^{11}=\frac{1}{12} n^{12}+\frac{1}{2} n^{11}+\frac{11}{12} n^{10}-\frac{11}{8} n^{8}+\frac{11}{6} n^{6}-\frac{11}{8} n^{4}+\frac{5}{12} n^{2}
\end{gathered}
$$

