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We shall consider the sequences, iwn(r,s;a,c)f, defined by wg = r, wj = s and wn = awn„i + cwn-2 ^orn > 2; 

henceforth denoted by J wn I where no ambiguity may result. We shall confine our attention to those sequences 

for which r, s, a, and c are integers with (a,c) = 1f (r,s) = /, (s,c) = 1, ac fi 0 and wn £ 0 for n > 1. The major resuJt of 

this paper will be a complete classification of all sequences j wn I for which wk \ w2k for all integers k > 1. 

If w0 = 0 and wL = 1, we have a well known sequence which we shall denote, following Carmichael [1 ] , by 

I Dn(a,c) J , or \ Dn J if no ambiguity may result, and concerning which we shall assume the following facts to 

be known ic f . [1 ] \ [2] ) : 
/=/ ; f ^ , £j = / for all /7 > 7, 
F 2 ; (Dn,Dn+1) = 1 for all ./?. 

/ 5 : If c is even, then Dn is odd for all /L 

If c is odd and a is even, then Dn=n (mod 2) for all /?, 
If both a and c are odd, then Dn is even if and only if n = 0 (mod 3), 

F# : Let/? = a2 *4c and let/? be an odd prime. 

Let ft/p; = ^ j f / ? | ^ 

i f f o c j = /, then/? \Dp~(b/p). 

F5: Dm+n=cDmDn^ +Dm+1Dn for all /?? > 0 and/? > 1. 

F £ ; If m |/7, then Z7m \Dn. 

If w0 = 2 and w1 = a, we have a well known sequence which we shall denote, following Carmichael [1 ] , by 

\sn(a,c) \ ,* or by •} Sn J if no ambiguity may result, and concerning which we assume the following fact to fcre 

known: 
F7: D2n = DnSnfoT?\\n. 

Theorem 1: wn(r,s: a,c) = sDn(atc)+rcDn^^(a,c) for all n > 7, 
The proof is by complete mathematical induction on/7; 
1. sD1 +rcDQ = s = wl . 

2. sD2 +rcDx = as + rc = w2 

3. Suppose the theorem is true for all/? less than some fixed integer ^ > 3. Then 1 % - / = sDf<-i + rcD^wd 

Wk-2 = sDk-.2 + rcDk-3. 

So 

*We differ from Carmichael in requiring that (a,2) = 1. if (a,2) = 2, wn(1, (a/2);a,c) = 1ASn (a,c) for all n, and hence 
the former sequence has essentially the same divisibility properties as the latter. 
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wk = a(sDk^1+rcDk^2)+c(sDk^2
 + rcDk^3) = s(aDk^1 + cDk„2) + rc(aD k-2 + cDk^) = sDk + rcDk„1. 

Using (F1), (F2) and the fact that (r,s) = I we have: 
Corollary: (wn,Dn) = (r, Dn) = (rf wn), (wn, Dn^) = (s, Dn^) = (s, wn). 

Theorem 2: (wr$, wn+i) = 1 for all n > 0 . 
The proof is by induction on n: 

1. (w0, wj = (r,s) = 1. 

2. (wuw2) = (s,as + cr) = (s,cr) = 1. 

3. Suppose(wk„<}, wk)- 1 forsomefixed integer/r>2. Let/W^, wk+i) = d. S\ncewk+i = awk + cwk-.i, d\cwk~i, 
whence d\c. Now wk=awk„i + cwk-2, whence d\n. Hence d = ~1. 

Theorem 3: (wn,c) = 1 for all n > U 
Proof: 

1. (wuc) = (s,c) = 1. 

2. Supposen > 2. Then wn = awn-i +cwn-2. L&td= (wn, c). Then d\awn-p Hence, by Theorem 2, d= 1. 

Theorem 4. (a) If c is even, then wn is odd for all n > 1. 
(b) If # is even and c is odd, then 

(i) Wn is odd, then wn =s (mod 2). 
(ii) if n is even, then wn =r (mod 2). 

(c) If a and c are both odd, then 
(i) l f /?=Q (mod 3), then 1^=/-(mod 2). 
(ii) If n = 1 (mod 3), then wn =s (mod 2). 
(iii) If/? ^ 2 (mod 3), then wn=r + s (mod 2). 

Proof: Part (a) is immediate from Theorem 3. 
Parts (b) and (c) follow from (F3) and Theorem 1. 

Corollary: If r is even, then wn ^Dn (mod 2) for all n. 

Theorem 5: Let/? be any odd prime. 
(a) lf/?|c, then (p, wn)= 1 for all /? > 1. 
(b) If (p,c)= 1, then p\wp-(h/pj if and only if/?|r. 
Proof: Part (a) is immediate from Theorem 3. 

Part (b) follows from (F4) and Theorem 1. 
REMARK: The only recurring sequences for which p\wp-.(t,/p) for more than a finite number of primes/? are 
± Dn(a,c) . 

Theorem 6: wm+n = cDn-iwm + Dnwm+i for all m > 0 and/? > 1. 
Proof: wtm+n = sDm+n + rcDm+n^1 (by Theorem 1); 

= s(cDmDn-i + Dm+iDn) + rc(cDm-iDn-i+DmDnJ (by F5); 
= cDn. 1 (sDm + rcDm„ 1) + Dn (sDm+1 + rcDm) 

= cDn..iwm + Dnwm+i (by Theorem 1). 
Corollary 1: (wn, wk) = (wn, Dn~k) = (wk, Dn-k), where n >k>0. 

Proof: This corollary is immediate if n = k. Suppose n > k>0. Then 
Wn = Wk+(n-k) = cDn-k-1Wk + Dn-kWk+1. 

Hence if d\wn and d\wkl then d\Dn.kwk+i. B v Theorem 2, (wk, wk+i)= I Hence d\Dn-k. 
Similarly, \\d\wn and d\D^k, then d\cDn„k-iwk. But (Dn„k, dDn-k„i)= I So d\wk. 
Finally, if d\wk and d\Dn-k, then d\wn. 

Corollary 2: wk\ wn if and o nly if wk | Dn„k, where n > k > 1, 
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Corollary 2: wk\wn if and only if Wk\Dn-k , where n>k> I 

Corollary 3: (a) Wk\wmk if and only if Wk\®(m-l)k for/7 > /. 

(b) If Wk\Dtk, then Wk\wmk whenever/?? = 1 (mod t). 

Proof: Part (a) is immediate from Corollary 2 with n = mk. 

Part (b). By (F6), Dtk\Dntk for all positive integers/?. Then Wk\Dntk, whence Wk\W(nt+1)k for all non-
negative integers/?. 

Corollary 4: (a) Wk\w2k if ar,d only if Wk\r. 

(b) Wk\v\f3k if and only if Wk\rSk-

(c) Wk\w^k ^or all k > 1 if and only if Wk\r(2s-ar) for all/r > 1. 

Proof: Part (a) follows from Corollary 3(a) and the corollary to Theorem 1. 
Part (b) follows from (F7), Corollary 3(a) and the corollary to Theorem 1. 
Part (c): Suppose that Wk\w3k for all k > 1. By Part (b), M/̂ .|rS^ for all/r > 1. In particular, n//1/*5;, 
i.e., s|r& Since (r,s) = 1,sa. let a = sd. We shall prove by complete mathematical induction on &that 

Sk(a,c) ••= dwk(r,s;a,c) + c(2 ~ rd)Dk-i(a,c) for all k>\. 
1. d\N1+c(2-rd)DQ = ds + Q - a = 5 / . 

2. dw2 + c(2-rd)D1 = d(as+cr) + c(2 - rd) = a 2 * 3 c * 5 2 . 

3. Suppose that the theorem is true for all integers k less than some fixed integer t > 3. 

St = aSt^1 + cSt-.2 = a[dwt„i + c(2 - rd)Dt„2] + c[dwt„2 + c(2 - rd)Dt„3] 

= adw^f + c(2 - rd)(Dt„<[ - cDt„3) + cdwt„2 + c2(2 - rd)Dt„3 

= adw^-j + c(2 - rd)Dt„ 1 - c2(2 - rd)Dt~3 + cdwt-2 + c2(2 - rd)Dt„3 

= d(awt~i + cwt~2) + c(2 - rd)Dt„i - dwt + c(2 - rd)Dt^, 

Hence if p\wn and p\Sn, thm p\c(2 - rd)Dn„f. So by Theorem 3 and the corollary to Theorem 1,p\(2- rd)s. 
Thus, by Part (b), if Wk\ W3k$w all k > 1, then Wk\r(2s - ar) for all k > 1. 

Conversely, suppose wk\r(2s - ar) for all k > 1.Since wi\r(2s-ar) and (r,s) = 1,s\a. Then, Setting <? = ft/, it fol-
lows from the first half of the proof that (Sk, Wk) = (2s- ar, w/̂ ^ for all/r > 1. Hence, by Part (bland the corollary 
to Theorem 1, if Wk\r(2s- ar) for all /r > 1, then wk\w3k for all k > I 

Lemma 1: Wk\w2k for all k > 1 if and only if ^ ^ ^ / | r f o r a l l k > 1. 

Proof: The " i f " part is immediate by Corollary 4, Part (a). 
Suppose that wk\w2k for all k > 1. By Corollary 4 (a), Wk\r and Wk+i\r. But by Theorem 2, (w^ Wk+l)= 1-

Hence WkWk+i\r> 

Lemma 2: If rfOand (a,r) = 1, then wk\w2k for all k only in the following cases: 
(a) r = s = ±1, a + c = 1; in which cases | wn X = ± 4 /, 7, — {•. 

(b) r = ±1,s = +1,-a + c = 1; in which cases 4 w„ | = ± | I ~l I ~h - J -
(c) r = i £ 5 = 7/ , a = c = -1;\n which cases J Mfo i = ± | 2 , - 7 , -1,2, -1,-1, - J> 

(d) r = * £ $ = ±7,a= 7, * = - 7 ; i n which cases | ^ l = ± | £ 1,-1,-2,-1, 1,2, 1,-1,-2,-1, 1, ••< ] - . 

Proof: Suppose M/̂  (r,s;a,c) is a sequence for which ^ |^2A- f ° r all ^ Then, by Corollary 4 (a), Wk \w2k f ° r a^ 
k. Since (s,r)= 1,s = wi and wx\r, we may conclude that s-±l UQ\N wn(r,1; a,c) = -wn(-r, -1;a, c) for all/?. So it 
suffices to consider the case where 5 = /. 

Since w2\r and (w2,r) = (a + cr, r) = (a,r) = 1, w2 = £l We shall prove by complete mathematical induction on n 
that wn (r,s; a,c) = (- 1)n+1wn (-r,s; -a,c) for all n > 0: 

(1) wjr,s;a,c) = r = (-1)U-r) = (-1)lw0(-r,s;-a,cl 
(2) wx(r,s;a,c) = s = (-1)2(s) = (-1)2wJ~r,s;-a,c). 
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(3) Suppose that the theorem is true for al! integers n less than some fixed integer k > 3. 

Wk(r,s;a,c) = awk-i(r,s;a,c) + cw^fcs;a,c) = (-V aw^7(-r,s;-a,c) + (-1) " cwk-2(~r,s;-a,c) 

= (~1)k+1[ha)wk^(-rfs;-afc)+cw^2(--rfs;-afc)] = (-1)k+1wk(-r,s;-a,c). 

Hence it suffices to consider the case where w2 - 1. 
CASE I: Suppose that a> 1. 
Then c < - 1 . For were c > 1, we would have Wj+1 > Wj > 1 for / > 3, contradicting the fact that w\ < in for all L 
Also since r= (1 - a)/c, 1 - a <c < - 7. So a + c> 1. 
(a) If a +c = 1, it is easily seen that the sequence reduces to < w0, wu — f " 1 I h — \ • 

(b) Suppose that a + c > 1. We shall prove by induction on/that M/ />M/ /_ ; fori> 3. 
(1) By hypothesis it is true fori = 3. 
(2) Suppose it to be true for/equal to some fixed integern > 3. Then wn+i = awn + cwn~i >wn(a + c)>wn. 

But this means that the w/% form an unbounded sequence, which is impossible since w, < \r\ for all / . 

CASE I I : Suppose that a < -1. 
Sincea + c\a- 7, e i t h e r c a - 7 or0 <c <-2a+ 7. 
(a) Suppose c = -1. Then w4 = a2 - a - 1 and, since w4 \r, a

2 - a - 7 < 7 - a. Hence a2 < 2, i.e., a = -1. 

Then r = -2and this yields the sequence | - 2 , 1 , 1 , - 2 , 1 , 1, — i . 

(b) Suppose c > 0 . Nowr= (1 -a)/c anda + c\r. So ac + c2\a- 7. 

:. ac + c2 < 7 - 5 
:. a(c+1) < 1 - c2 

c+ 1 
k\%oac + c2 > a— 1, whencea(c - 1) > -c2 - 7. Hence eitherc= 7 or 

c- 1 < -a < °-—=(c+1) + 2 

c - 7 ff- 7 * 

Thus case (b) reduces to the following four subcases: 
(i) c= I Uo\NW3\D3lle.,a + 1\a2 + I Since a2 + 1 = (a + 1)(a- 1) + Za + 1\2. So a =-2 ora =-3. 

1. I f £= 7anda = -<? then r = J butn/5 = - Z 
2. \fc= 1anda = -3, then r = 4 butw/4 = 7 

(ii) a = -c- I Then w^= 2c + 1, r= (c+2)/c and w4|r. Hence2c2 + c <c+2. Soc= 1, a case already considered. 
(iii) a = -c+ 7. But then 3 * c = 7, a case already considered. 
(iv) c = 2 and 3 = -5. Then /- = 5 but w4 = 17. 

This exhausts all of the possible cases. The other six sequences mentioned in the theorem are precisely those ob-
tained from the sequences | 1, 1, — I and i - 2 , 1, 1, - 2 , 1,1, — \ by the permutations of sign outlined at the 
beginning of the proof. 

Theorem 7. If r / 0, then wk| W2/f * o r a " ^ o n 'y m t n e cases Iistzed in Lemma 2. 
Proof: We shall prove that if r / 0 and fo/V = d >\, then w* fails to divide W2k for some /r. The theorem will 

then follow by Lemma 2. Suppose the contrary, i.e., suppose there exists a sequence wn(r,s;a,c) such that wk\w2k 
for all k As in Lemma 2,s = ±1 and, moreover, we need only consider the case where s = 1. 

Then w2|rand w2\D2, where D2 = a. So w2\d. But d\w2, since w2 = as + cr. Thus i^2 = ±d and, a$ in the lemma, 
we need only consider the case where w2 = d. 

Suppose a > 0 and d > 0, c < 0 for otherwise the Wj'% would become unboundedly large. 
Uo\Nd(ad + c)\r by Lemma 1 and r= (d~ a)/c ? 0. Hence c(ad + c)\ 7 - (a/d) and 1 - (a/d) <0. 
Since d 7 - fa/W, 7 -(a/d)<c<0. Since ad + c\1 - (a/d), ad + 1 - (a/d) <ad+ c <(a/d) - 7. 
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:. ad <2-§--2. d 
d2 ^ 2-^-< 2, 

a ' 
which is impossible since d > 2. Hence a < 0. 

Since cd(ad + c)\a - d, a-d < cd(ad + c) <d- a. 
Supposes <0. Mowacd2 +c2d<d- a. 

:. a(cd2 + 1) < d(l-c2). 

• a > d(1-c2) > Q 

" a > cd2 + 1 > 0 f 

contradicting the fact that a < 0. So a < 0 and c > 0. 
No\Nacd2+c2d > a-d. 

:. a(cd2- 1) > -d(c2 + 1). 

d(c2 + 1) 

Since a < — 1, 

a>-'~&-r 

c2d + d > 1 
cd2- 1 

:. c2d + d > cd2 - 1. 

:. d[c(c-d)+l] > -1. 

Since d > 1, d[c(c - d) + 1] > 0, whence c(c - d)>-L Then, since c^O and (c,d)= 1, either c> d ore = / and 
d = 2. But in the latter case, the inequalities 

cd2- 1 
imply that 5 = - 7 , contradicting the fact that*/|& 

Now, since cd\a-d, c < / - (a/d) < 1 - a. SoO<d<c<1- (a/d) < 1 - a. 
Suppose that a = -d. Then a + cr = -a, i.e., cr = -2a and a\r. 
CASE I: r=-aandc = 2, 
Then ad + c = 2 - a2 and ad + c\-a. Hence eithera = - / or a = -2. 
But both possibilities are inadmissible since d =-a > /and (a,c) = I 

CASE I I : r =-2a and c = 1. 
Then ad + c = 1 - a2 and ad + c\-2a. But this requires that 1 - a2 must divide 2, since fa, 1 - a2)= 1, and this is 

not satisfied by any integers. Hence a < -2d. 
Suppose that d >2. By Lemma 1, wdw^\r. It follows that (ad + c)(a2d + ac + cd) >a- d. 

;. a-d < a3d2 + 2a2cd' + acd2 + ac2 + c2d < a3 d2 + 2a2cd + acd2 < d2a3 +2a2(1 - a)d+ad3. 

:. 0 < d2a3 +2a2(1-a)d + ad3 -a+d = (d2 - 2d)a3 +2da2 + (d3 - 1)a + d < (d2 - 2d)a3 + 2da2 

< a3 +2da2 = a2(a + 2d) < ft 

a contradiction. Hence d = 2. Then 
9 — a 

ad + c = 2a + c and r=-—-
c 

By Lemma \,d(ad + c)\r. So 4a + 2c > a- 2. 

:. c > -°~a-1 > -a- 1. 

Hence -a - 1 <c <-a+ 1, i.e., c = -a. But this contradicts the facts that (a,c) = 1 and a < -1 
Thus we have verified that there is no sequence wn(r,s;atc) for which r £ 0, (a,r) > 1 and w^w^k for all k. 
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CONCLUDING REMARKS 

This theorem completes the identification of those sequences for which Wk\w2k f ° r a " k > V those sequences 
being 

±\tln(afc)} ; ±{ wn (1,1; a,c) I , 
where 

a + c = 1; + | wn (J, -1; arc) \ , 

where 
-a + c = 1; ± hwn (Z - / ; - 7 , -V } and ± | wn (2, 1; I -1)\ . 

These sequences, it is clear are precisely those for which Wk \ wmk for all integers k > 1 and m > Q. In fact, an in-
spection of the proofs of Lemma 2 and Theorem 7 discloses that these are the only sequences for which Wk\w2k 

f o r 7 ^ £ < 5 a n d | \wk\ \k-1,2,-\ is bounded. 
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