DIVISIBILITY PROPERTIES OF CERTAIN RECURRING SEQUENCES

RONALD SOLOMON

Department of Viathematics, Ohio State University, Columbus, Ohio 43210

We shall consider the sequences, $\left\{w_{n}(r, s ; a, c)\right\}$, defined by $w_{0}=r, w_{1}=s$ and $w_{n}=a w_{n-1}+c w_{n-2}$ for $n \geqslant 2$; henceforth denoted by $\left\{w_{n}\right\}$ where no ambiguity may result. We shall confine our attention to those sequences for which r, s, a, and c are integers with $(a, c)=1,(r, s)=1,(s, c)=1, a c \neq 0$ and $w_{n} \neq 0$ for $n \geqslant 1$. The major rosult of this paper will be a complete classification of all sequences $\left\{w_{n}\right\}$ for which $w_{k} \mid w_{2 k}$ for all integers $k \geqslant 1$.
If $w_{0}=0$ and $w_{1}=1$, we have a well known sequence which we shall denote, following Carmichael [1], by $\left\{D_{n}(a, c)\right\}$, or $\left\{D_{n}\right\}$ if no ambiguity may result, and concerning which we shall assume the following facts to be known (cf. [1]', [2]):

$$
\begin{array}{ll}
\text { F1: } & \left(D_{n}, c\right)=1 \text { for all } n \geqslant 1, \\
\text { F2: } & \left(D_{n}, D_{n+1}\right)=1 \text { for all } n . \\
\text { F3: } & \text { If } c \text { is even, then } D_{n} \text { is odd for all } n . \\
& \text { If } c \text { is odd and } a \text { is even, then } D_{n} \equiv n(\bmod 2) \text { for all } n . \\
& \text { If both } a \text { and } c \text { are odd, then } D_{n} \text { is even if and only if } n \equiv 0(\bmod 3) . \\
\text { F4: } & \text { Let } b=a^{2}+4 c \text { and let } p \text { be an odd prime. } \\
& \text { Let }(b / p)=(b / p) \text { if }(b, p)=1 \\
\text { if } p \mid b . \\
& \text { If }(p, c)=1, \text { then } p \mid D_{p}-(b / p) . \\
\text { F5: } & D_{m+n}=c D_{m} D_{n-1}+D_{m+1} D_{n} \text { for all } m \geqslant 0 \text { and } n \geqslant 1 . \\
\text { F6: } & \text { If } m \mid n, \text { then } D_{m} \mid D_{n} .
\end{array}
$$

If $w_{0}=2$ and $w_{1}=a$, we have a well known sequence which we shall denote, following Carmichael [1], by $\left\{s_{n}(a, c)\right\}, *$ or by $\left\{s_{n}\right\}$ if no ambiguity may result, and concerning which we assume the following fact to be known:

$$
\text { F7: } \quad D_{2 n}=D_{n} S_{n} \text { for all } n .
$$

$$
\text { Theorem 1: } \quad w_{n}(r, s: a, c)=s D_{n}(a, c)+r c D_{n-1}(a, c) \text { for all } n \geqslant 1
$$

The proof is by complete mathematical induction on n :
1.

$$
\begin{gathered}
s D_{1}+r c D_{0}=s=w_{1} . \\
s D_{2}+r c D_{1}=a s+r c=w_{2}
\end{gathered}
$$

3. Suppose the theorem is true for all n less than some fixed integer $k \geqslant 3$. Then $w_{k-1}=s D_{k-1}+r c D_{k-2}$ and

$$
w_{k-2}=s D_{k-2}+r c D_{k-3} .
$$

So
*We differ from Carmichael in requiring that $(a, 2)=1$. If $(a, 2)=2, w_{n}(1,(a / 2) ; a, c)=1 / 2 S_{n}(a, c)$ for all n, and hence the former sequence has essentially the same divisibility properties as the latter.

$$
w_{k}=a\left(s D_{k-1}+r c D_{k-2}\right)+c\left(s D_{k-2}+r c D_{k-3}\right)=s\left(a D_{k-1}+c D_{k-2}\right)+r c\left(a D_{k-2}+c D_{k-3}\right)=s D_{k}+r c D_{k-1} .
$$

Using (F1), (F2) and the fact that $(r, s)=1$, we have:

$$
\text { Corollary: } \quad\left(w_{n}, D_{n}\right)=\left(r, D_{n}\right)=\left(r, w_{n}\right), \quad\left(w_{n}, D_{n-1}\right)=\left(s, D_{n-1}\right)=\left(s, w_{n}\right) .
$$

Theorem 2: $\quad\left(w_{n}, w_{n+1}\right)=1$ for all $n \geqslant 0$.
The proof is by induction on n :
1.

$$
\begin{gathered}
\left(w_{0}, w_{1}\right)=(r, s)=1 \\
\left(w_{1}, w_{2}\right)=(s, a s+c r)=(s, c r)=1
\end{gathered}
$$

3. Suppose $\left(w_{k-1}, w_{k}\right)=1$ for some fixed integer $k \geqslant 2$. Let $\left(w_{k}, w_{k+1}\right)=d$. Since $w_{k+1}=a w_{k}+c w_{k-1}, d \mid c w_{k-1}$, whence $d \mid c$. Now $w_{k}=a w_{k-1}+c w_{k-2}$, whence $d \mid n$. Hence $d=1$.

Theorem 3:
 $$
\left(w_{n}, c\right)=1 \text { for all } n \geqslant 1
$$

Proof:

1.

$$
\left(w_{1}, c\right)=(s, c)=1
$$

2. Suppose $n \geqslant 2$. Then $w_{n}=a w_{n-1}+c w_{n-2}$. Let $d=\left(w_{n}, c\right)$. Then $d \mid a w_{n-1}$. Hence, by Theorem $2, d=1$.

Theorem 4. (a) If c is even, then w_{n} is odd for all $n \geqslant 1$.
(b) If a is even and c is odd, then
(i) If n is odd, then $w_{n} \equiv s(\bmod 2)$.
(ii) If n is even, then $w_{n} \equiv r(\bmod 2)$.
(c) If a and c are both odd, then
(i) If $n \equiv 0(\bmod 3)$, then $w_{n} \equiv r(\bmod 2)$.
(ii) If $n \equiv 1(\bmod 3)$, then $w_{n} \equiv s(\bmod 2)$.
(iii) If $n \equiv 2(\bmod 3)$, then $w_{n} \equiv r+s(\bmod 2)$.

Proof: Part (a) is immediate from Theorem 3.
Parts (b) and (c) follow from (F3) and Theorem 1.
Corollary: If r is even, then $w_{n} \equiv D_{n}(\bmod 2)$ for all n.
Theorem 5: Let p be any odd prime.
(a) If $p \mid c$, then $\left(p, w_{n}\right)=1$ for all $n \geqslant 1$.
(b) If $(p, c)=1$, then $p \mid w_{p-(b / p)}$ if and only if $p \mid r$.

Proof: Part (a) is immediate from Theorem 3.
Part (b) follows from (F4) and Theorem 1.
REMARK: The only recurring sequences for which $p \nmid w_{p-(b / p)}$ for more than a finite number of primes p are $\pm D_{n}(a, c)$.
Theorem 6: $\quad w_{m+n}=c D_{n-1} w_{m}+D_{n} w_{m+1} \quad$ for all $\quad m \geqslant 0$ and $n \geqslant 1$.
Proof:

$$
\begin{gathered}
w_{m+n}=s D_{m+n}+r c D_{m+n-1} \quad \text { (by Theorem 1); } \\
=s\left(c D_{m} D_{n-1}+D_{m+1} D_{n}\right)+r c\left(c D_{m-1} D_{n-1}+D_{m} D_{n}\right) \quad \text { (by F5); } \\
=c D_{n-1}\left(s D_{m}+r c D_{m-1}\right)+D_{n}\left(s D_{m+1}+r c D_{m}\right) \\
=c D_{n-1} w_{m}+D_{n} w_{m+1} \quad \text { (by Theorem 1). }
\end{gathered}
$$

Corollary 1: $\quad\left(w_{n}, w_{k}\right)=\left(w_{n}, D_{n-k}\right)=\left(w_{k}, D_{n-k}\right)$, where $n \geqslant k \geqslant 0$.
Proof: This corollary is immediate if $n=k$. Suppose $n \geqslant k \geqslant 0$. Then

$$
w_{n}=w_{k+(n-k)}=c D_{n-k-1} w_{k}+D_{n-k} w_{k+1}
$$

Hence if $d \mid w_{n}$ and $d \mid w_{k}$, then $d \mid D_{n-k} w_{k}+1$. By Theorem $2,\left(w_{k}, w_{k+1}\right)=1$. Hence $d \mid D_{n-k}$.
Similarly, if $d \mid w_{n}$ and $d \mid D_{b-k}$, then $d \mid c D_{n-k-1} w_{k}$. But $\left(D_{n-k} d D_{n-k-1}\right)=1$. So $d \mid w_{k}$.
Finally, if $d \mid w_{k}$ and $d \mid D_{n-k}$, then $d \mid w_{n}$.
Corollary 2: $w_{k} \mid w_{n}$ if and only if $w_{k} \mid D_{n-k}$, where $n \geqslant k \geqslant 1$.

Corollary 2: $w_{k} \mid w_{n}$ if and only if $w_{k} \mid D_{n-k}$, where $n \geqslant k \geqslant 1$.
Corollary 3: (a) $w_{k} \mid w_{m k}$ if and only if $w_{k} \mid D_{(m-1) k}$ for $n \geqslant 1$.
(b) If $w_{k} \mid D_{t k}$, then $w_{k} \mid w_{m k}$ whenever $m \equiv 1(\bmod t)$.

Proof: Part (a) is immediate from Corollary 2 with $n=m k$.
Part (b). By (F6), $D_{t k} \mid D_{n t k}$ for all positive integers n. Then $w_{k} \mid D_{n t k}$, whence $w_{k} \mid w_{(n t+1) k}$ for all nonnegative integers n.
Corollary 4: (a) $w_{k} \mid w_{2 k}$ if and only if $w_{k} \mid r$.
(b) $w_{k} \mid w_{3 k}$ if and only if $w_{k} \mid r S_{k}$.
(c) $w_{k} \mid w_{3 k}$ for all $k \geqslant 1$ if and only if $w_{k} \mid r(2 s-a r)$ for all $k \geqslant 1$.

Proof: Part (a) follows from Corollary 3 (a) and the corollary to Theorem 1.
Part (b) follows from (F7), Corollary 3(a) and the corollary to Theorem 1.
Part (c): Suppose that $w_{k} \mid w_{3 k}$ for all $k \geqslant 1$. By Part (b), $w_{k} \mid r S_{k}$ for all $k \geqslant 1$. In particular, $w_{1} \mid r S_{1}$, i.e., $s \mid r a$. Since $(r, s)=1$, sa. Let $a=s d$. We shall prove by complete mathematical induction on k that
1.

$$
S_{k}(a, c)=d w_{k}(r, s ; a, c)+c(2-r d) D_{k-1}(a, c) \text { for all } k \geqslant 1
$$

$d w_{1}+c(2-r d) D_{0}=d s+0=a=S_{1}$.
2. $\quad d w_{2}+c(2-r d) D_{1}=d(a s+c r)+c(2-r d)=a^{2}+3 c=S_{2}$.
3. Suppose that the theorem is true for all integers k less than some fixed integer $t \geqslant 3$.

$$
\begin{aligned}
S_{t} & =a S_{t-1}+c S_{t-2}=a\left[d w_{t-1}+c(2-r d) D_{t-2}\right]+c\left[d w_{t-2}+c(2-r d) D_{t-3}\right] \\
& =a d w_{t-1}+c(2-r d)\left(D_{t-1}-c D_{t-3}\right)+c d w_{t-2}+c^{2}(2-r d) D_{t-3} \\
& =a d w_{t-1}+c(2-r d) D_{t-1}-c^{2}(2-r d) D_{t-3}+c d w_{t-2}+c^{2}(2-r d) D_{t-3} \\
& =d\left(a w_{t-1}+c w_{t-2}\right)+c(2-r d) D_{t-1}=d w_{t}+c(2-r d) D_{t-1}
\end{aligned}
$$

Hence if $p \mid w_{n}$ and $p \mid S_{n}$, then $p \mid c(2-r d) D_{n-1}$. So by Theorem 3 and the corollary to Theorem $1, p \mid(2-r d) s$. Thus, by Part (b), if $w_{k} \mid w_{3 k}$ for all $k \geqslant 1$, then $w_{k} \mid r(2 s-a r)$ for all $k \geqslant 1$.
Conversely, suppose $w_{k} \mid r(2 s-a r)$ for all $k \geqslant 1$. Since $w_{1} \mid r(2 s-a r)$ and $(r, s)=1, s\{a$. Then, letting $a=s d$, it follows from the first half of the proof that $\left(S_{k}, w_{k}\right)=\left(2 s-a r, w_{k}\right)$ for all $k \geqslant 1$. Hence, by Part (b) and the corollary to Theorem 1, if $w_{k} \mid r(2 s-a r)$ for all $k \geqslant 1$, then $w_{k} \mid w_{3 k}$ for all $k \geqslant 1$.
Lemma 1: $\quad w_{k} \mid w_{2 k}$ for all $k \geqslant 1$ if and only if $w_{k} w_{k+1} \mid r$ for all $k \geqslant 1$.
Proof: The "if" part is immediate by Corollary 4, Part (a).
Suppose that $w_{k} \mid w_{2 k}$ for all $k \geqslant 1$. By Corollary 4 (a), $w_{k} \mid r$ and $w_{k+1} \mid r$. But by Theorem $2,\left(w_{k}, w_{k+1}\right)=1$. Hence $w_{k} w_{k+1} \mid r$.
Lemma 2: If $r \neq 0$ and $(a, r)=1$, then $w_{k} \mid w_{2 k}$ for all k only in the following cases:
(a) $r=s= \pm 1, a+c=1$; in which cases $\left\{w_{n}\right\}= \pm\{1,1, \ldots\}$.
(b) $r= \pm 1, s=\mp 1,-a+c=1$; in which cases $\left\{w_{n}\right\}= \pm\{1,-1,1,-1, \cdots\}$.
(c) $r= \pm 2, s=\mp 1, a=c=-1$; in which cases $\left\{w_{n}\right\}= \pm\{2,-1,-1,2,-1,-1, \cdots\}$.
(d) $r= \pm 2, s= \pm 1, a=1, c=-1$; in which cases $\left\{w_{n}\right\}= \pm\{2,1,-1,-2,-1,1,2,1,-1,-2,-1,1, \cdots\}$.

Proof: Suppose $w_{n}(r, s ; a, c)$ is a sequence for which $w_{k} \mid w_{2 k}$ for all k. Then, by Corollary 4 (a), $w_{k} \mid w_{2 k}$ for all k. Since $(s, r)=1, s=w_{1}$ and $w_{1} \mid r$, we may conclude that $s= \pm 1$. Now $w_{n}(r, 1 ; a, c)=-w_{n}(-r,-1 ; a, c)$ for all n. So it suffices to consider the case where $s=1$.
Since $w_{2} \mid r$ and $\left(w_{2}, r\right)=(a+c r, r)=(a, r)=1, w_{2}= \pm 1$. We shall prove by complete mathematical induction on n that $w_{n}(r, s ; a, c)=(-1)^{n+1} w_{n}(-r, s ;-a, c)$ for all $n \geqslant 0$:
(1) $w_{0}(r, s ; a, c)=r=(-1)^{1}(-r)=(-1)^{1} w_{0}(-r, s ;-a, c)$.
(2) $w_{1}(r, s ; a, c)=s=(-1)^{2}(s)=(-1)^{2} w_{1}(-r, s ;-a, c)$.
(3) Suppose that the theorem is true for all integers n less than some fixed integer $k \geqslant 3$.

$$
\begin{aligned}
w_{k}(r, s ; a, c) & =a w_{k-1}(r, s ; a, c)+c w_{k-2}(r, s ; a, c)=(-1)^{k} a w_{k-1}(-r, s ;-a, c)+(-1)^{k-1} c w_{k-2}(-r, s ;-a, c) \\
& =(-1)^{k+1}\left[(-a) w_{k-1}(-r, s ;-a, c)+c w_{k-2}(-r, s ;-a, c)\right]=(-1)^{k+1} w_{k}(-r, s ;-a, c)
\end{aligned}
$$

Hence it suffices to consider the case where $w_{2}=1$.
CASE I: Suppose that $a \geqslant 1$.
Then $c \leqslant-1$. For were $c \geqslant 1$, we would have $w_{i+1}>w_{i}>1$ for $i \geqslant 3$, contradicting the fact that $w_{i} \leqslant|r|$ for all i.
Also since $r=(1-a) / c, 1-a \leqslant c \leqslant-1$. So $a+c \geqslant 1$.
(a) If $a+c=1$, it is easily seen that the sequence reduces to $\left\{w_{0}, w_{1}, \cdots\right\}=\{1,1, \cdots\}$.
(b) Suppose that $a+c>1$. We shall prove by induction on i that $w_{i}>w_{i-1}$ for $i \geqslant 3$.
(1) By hypothesis it is true for $i=3$.
(2) Suppose it to be true for i equal to some fixed integer $n \geqslant 3$. Then $w_{n+1}=a w_{n}+c w_{n-1}>w_{n}(a+c)>w_{n}$.

But this means that the w_{i} 's form an unbounded sequence, which is impossible since $w_{i} \leqslant|r|$ for all i.
CASE II: Suppose that $a \leqslant-1$.
Since $a+c \mid a-1$, either $c=-1$ or $0<c<-2 a+1$.
(a) Sunpose $c=-1$. Then $w_{4}=a^{2}-a-1$ and, since $w_{4} \mid r, a^{2}-a-1 \leqslant 1-a$. Hence $a^{2} \leqslant 2$, i.e., $a=-1$.

Then $r=-2$ and this yields the sequence $\{-2,1,1,-2,1,1, \ldots\}$.
(b) Suppose $c>0$. Now $r=(1-a) / c$ and $a+c \mid r$. So $a c+c^{2} \mid a-1$.

$$
\begin{gathered}
\therefore a c+c^{2} \leqslant 1-a \\
\therefore a(c+1) \leqslant 1-c^{2} \\
\therefore a \leqslant \frac{1-c^{2}}{c+1}=1-c .
\end{gathered}
$$

Also $a c+c^{2} \geqslant a-1$, whence $a(c-1) \geqslant-c^{2}-1$. Hence either $c=1$ or

$$
c-1 \leqslant-a \leqslant \frac{c^{2}+1}{c-1}=(c+1)+\frac{2}{c-1} .
$$

Thus case (b) reduces to the following four subcases:
(i) $c=1$. Now $w_{3} \mid D_{3}$, i.e., $a+1 \mid a^{2}+1$. Since $a^{2}+1=(a+1)(a-1)+2 a+1 \mid 2$. So $a=-2$ or $a=-3$.

1. If $c=1$ and $a=-2$, then $r=3$ but $w_{5}=-7$.
2. If $c=1$ and $a=-3$, then $r=4$ but $w_{4}=7$.
(ii) $a=-c-1$. Then $w_{4}=2 c+1, r=(c+2) / c$ and $w_{4} \mid r$. Hence $2 c^{2}+c \leqslant c+2$. So $c=1$, a case already considered.
(iii) $a=-c+1$. But then $a+c=1$, a case already considered.
(iv) $c=2$ and $a=-5$. Then $r=5$ but $w_{4}=17$.

This exhausts all of the possible cases. The other six sequences mentioned in the theorem are precisely those obtained from the sequences $\{1,1, \ldots\}$ and $\{-2,1,1,-2,1,1, \ldots\}$ by the permutations of sign outlined at the beginning of the proof.
Theorem 7. If $r \neq 0$, then $w_{k} \mid w_{2 k}$ for all k only in the cases listed in Lemma 2.
Proof: We shall prove that if $r \neq 0$ and $(a, r)=d>1$, then w_{k} fails to divide $w_{2 k}$ for some k. The theorem will then follow by Lemma 2. Suppose the contrary, i.e., suppose there exists a sequence $w_{n}(r, s ; a, c)$ such that $\left.w_{k}\right\} w_{2 k}$ for all k. As in Lemma 2, $s= \pm 1$ and, moreover, we need only consider the case where $s=1$.
Then $w_{2} \mid r$ and $w_{2} \mid D_{2}$, where $D_{2}=a$. So $w_{2} \mid d$. But $d \mid w_{2}$, since $w_{2}=a s+c r$. Thus $w_{2}= \pm d$ and, as in the lemma, we need only consider the case where $w_{2}=d$.
Suppose $a>0$ and $d>0, c<0$ for otherwise the $w_{i}^{\prime} s$ would become unboundedly large.
Now $d(a d+c) \mid r$ by Lemma 1 and $r=(d-a) / c \neq 0$. Hence $c(a d+c) \mid 1-(a / d)$ and $1-(a / d)<0$.
Since $c \mid 1-(a / d), 1-(a / d) \leqslant c<0$. Since $a d+c \mid 1-(a / d), a d+1-(a / d) \leqslant a d+c \leqslant(a / d)-1$.

$$
\begin{gathered}
\therefore a d \leqslant \frac{2 a}{d}-2 \\
d^{2} \leqslant 2-\frac{2 d}{a}<2
\end{gathered}
$$

which is impossible since $d \geqslant 2$. Hence $a<0$.

$$
\text { Since } c d(a d+c) \mid a-d, a-d \leqslant c d(a d+c) \leqslant d-a \text {. }
$$

Suppose $c<0$. Now acd ${ }^{2}+c^{2} d \leqslant d-a$.

$$
\begin{aligned}
& \therefore a\left(c d^{2}+1\right) \leqslant d\left(1-c^{2}\right) \\
& \therefore a \geqslant \frac{d\left(1-c^{2}\right)}{c d^{2}+1} \geqslant 0
\end{aligned}
$$

contradicting the fact that $a<0$. So $a<0$ and $c>0$.
Now $a c d^{2}+c^{2} d>a-d$.

$$
\begin{gathered}
\therefore a\left(c d^{2}-1\right) \geqslant-d\left(c^{2}+1\right) . \\
\therefore a \geqslant-\frac{d\left(c^{2}+1\right)}{c d^{2}-1} .
\end{gathered}
$$

Since $a \leqslant-1$,

$$
\begin{gathered}
\frac{c^{2} d+d}{c d^{2}-1} \geqslant 1 . \\
\therefore c^{2} d+d \geqslant c d^{2}-1 . \\
\therefore d[c(c-d)+1] \geqslant-1 .
\end{gathered}
$$

Since $d>1, d[c(c-d)+1] \geqslant 0$, whence $c(c-d) \geqslant-1$. Then, since $c \neq 0$ and $(c, d)=1$, either $c>d$ or $c=1$ and $d=2$. But in the latter case, the inequalities

$$
-\frac{d\left(c^{2}+1\right)}{c d^{2}-1} \leqslant a \leqslant-1
$$

imply that $a=-1$, contradicting the fact that $d \mid a$.
Now, since $c d \mid a-d, c \leqslant 1-(a / d)<1-a$. So $0<d<c \leqslant 1-(a / d)<1-a$.
Suppose that $a=-d$. Then $a+c r=-a$, i.e., $c r=-2 a$ and $a \mid r$.
CASE I: $r=-a$ and $c=2$.
Then $a d+c=2-a^{2}$ and $a d+c \mid-a$. Hence either $a=-1$ or $a=-2$.
But both possibilities are inadmissible since $d=-a>1$ and $(a, c)=1$.
CASE II: $r=-2 a$ and $c=1$.
Then $a d+c=1-a^{2}$ and $a d+c \mid-2 a$. But this requires that $1-a^{2}$ must divide 2 , since $\left(a, 1-a^{2}\right)=1$, and this is not satisfied by any integer a. Hence $a \leqslant-2 d$.
Suppose that $d>2$. By Lemma $1, w_{3} w_{4} \mid r$. It follows that $(a d+c)\left(a^{2} d+a c+c d\right) \geqslant a-d$.

$$
\begin{aligned}
\therefore & a-d \leqslant a^{3} d^{2}+2 a^{2} c d+a c d^{2}+a c^{2}+c^{2} d \leqslant a^{3} d^{2}+2 a^{2} c d+a c d^{2}<d^{2} a^{3}+2 a^{2}(1-a) d+a d^{3} . \\
\therefore 0 & <d^{2} a^{3}+2 a^{2}(1-a) d+a d^{3}-a+d=\left(d^{2}-2 d\right) a^{3}+2 d a^{2}+\left(d^{3}-1\right) a+d<\left(d^{2}-2 d\right) a^{3}+2 d a^{2} \\
& <a^{3}+2 d a^{2}=a^{2}(a+2 d) \leqslant 0
\end{aligned}
$$

a contradiction. Hence $d=2$. Then

$$
a d+c=2 a+c \quad \text { and } \quad r=\frac{2-a}{c}
$$

By Lemma $1, d(a d+c) \mid r$. So $4 a+2 c>a-2$.

$$
\therefore c \geqslant-\frac{3}{2} a-1>-a-1
$$

Hence $-a-1<c<-a+1$, i.e., $c=-a$. But this contradicts the facts that (a, c) $=1$ and $a<-1$.
Thus we have verified that there is no sequence $w_{n}(r, s ; a, c)$ for which $r \neq 0,(a, r)>1$ and $w_{k} \mid w_{2 k}$ for all k.

CONCLUDING REMARKS

This theorem completes the identification of those sequences for which $w_{k} \mid w_{2 k}$ for all $k \geqslant 1$; those sequences being
where

$$
\pm\left\{D_{n}(a, c)\right\} ; \quad \pm\left\{w_{n}(1,1 ; a, c)\right\},
$$

$$
a+c=1 ; \quad \pm\left\{w_{n}(1,-1 ; a, c)\right\},
$$

where

$$
-a+c=1 ; \quad \pm\left\{w_{n}(2,-1 ;-1,-1)\right\} \quad \text { and } \quad \pm\left\{w_{n}(2,1 ; 1,-1)\right\} .
$$

These sequences, it is clear are precisely those for which $w_{k} \mid w_{m k}$ for all integers $k \geqslant 1$ and $m \geqslant 0$. In fact, an inspection of the proofs of Lemma 2 and Theorem 7 discloses that these are the only sequences for which $w_{k} \mid w_{2 k}$ for $1 \leqslant k \leqslant 5$ and $\left\{\left|w_{k}\right| \mid k-1,2, \cdots\right\}$ is bounded.

REFERENCES

1. R. D. Carmichael, "On the Numerical Factors of the Arithmetic Forms $a^{n} \pm \beta^{n}$," Annals of Mathematics, 2, 15 (1913), pp. 30-70.
2. H. Siebeck, "Die recurrenten Reihen, vom Standpuncte der Zahlentheorie aus betrachtet," Journal für die reine und angewandte Mathematik, XXXIII, 1(1846), pp. 71-77.
3. D. Zeitlin, "Power Identities for Sequences Defined by $W_{n+2}=d W_{n+1}-c W_{n}$," The Fibonacci Quarterly, Vol. 3, No. 4 (Dec. 1965), pp. 241-256.
