A CONJECTURE RELATING QUARTIC RECIPROCITY AND QUARTIC RESIDUACITY TO PRIMITIVE PYTHAGOREAN TRIPLES

LARRY TAYLOR

85-22 144th Street, Briarwood, New York 11435

CONJECTURE

(a) If

.

$p = a^2 + b^2 \equiv 1 \pmod{4}$

is prime, $q \equiv 1 \pmod{8}$ is prime with (p/q) = 1, and (x, y, z) is a primitive Pythagorean triple, then either $a^2 \equiv x^2$ with $b^2 \equiv y^2 \pmod{q}$ for some (x, y) and $a^2 \equiv -x^2$ with $b^2 \equiv -y^2 \pmod{q}$ for other (x, y) or $a^2 \neq \pm x^2$ with $b^2 \equiv \pm y^2 \pmod{q}$ for any (x, y);

$$(\sqrt{p}/a)(\sqrt{a}/p) = 1$$

if and only if the first alternative is true, in which case

$$(z/q)(\sqrt{q}/p) = 1.$$

(b) If $q \equiv 5 \pmod{8}$, then either $a^2 \equiv x^2 \pmod{b^2} \equiv y^2 \pmod{2q}$ for some (x,y) and $a^2 \equiv q - x^2 \pmod{b^2} \equiv q - y^2 \pmod{2q}$ for other (x,y) or $a^2 \equiv -x^2 \pmod{b^2} \equiv -y^2 \pmod{2q}$ for some (x,y) and $a^2 \equiv q + x^2 \pmod{b^2} \equiv q + y^2 \pmod{2q}$ for some (x,y) and $a^2 \equiv q + x^2 \pmod{b^2} \equiv q + y^2 \pmod{2q}$ for other (x,y);

$$(\sqrt{p}/q)(\sqrt{q}/p) = 1$$

if and only if the first alternative is true, and

$$(z/q)(\sqrt{q}/p) = 1$$

if and only if $a \equiv x \pmod{2}$.

(c) If $q \equiv 3 \pmod{8}$, then $a^2 \equiv x^2$ with $b^2 \equiv y^2 \pmod{2q}$ for some (x,y) and $a^2 \equiv q + x^2$ with $b^2 \equiv q + y^2 \pmod{2q}$ for other (x,y);

$$(z/q)(\sqrt{-q}/p) = 1$$

in the first case and

$$(-z/q)(\sqrt{-q}/p) = 1$$

in the second case.

(d) If $q \equiv 7 \pmod{8}$, then $a^2 \equiv x^2$ with $b^2 \equiv y^2 \pmod{q}$ for some (x, y) and

$$(z/q)(\sqrt{-q}/p) = 1.$$

In the following examples, (x, y, z) is the smallest primitive Pythagorean triple that satisfies the congruence :

A CONJECTURE RELATING QUARTIC RECIPROCITY AND QUARTIC RESIDUACITY TO PRIMITIVE PYTHAGOREAN TRIPLES

April 1976

$p = a^2 + b^2$	(x, y, z)	<i>q</i> or 2 <i>q</i>
5 = 1 + 4,	(21, 20, 29)	
	(12, 35, 37)	(mod 22);
	(77, 36, 85)	
	(20, 21, 29)	(mod 38);
	(57, 176, 185)	
	(12, 5, 13)	(mod 58);
	(435, 308, 533)	(mod 31);
	(—, —, —)	
	(,,)	(mod 41);
29 = 25 + 4,	(5, 12, 13)	
	(20, 21, 29)	
41 = 25 + 16,	(5, 12, 13)	
	(20, 21, 29)	
101 = 1 + 100,	(21, 20, 29)	
	(12, 5, 13)	
109 = 9 + 100,	(21, 20, 29)	
	(12, 5, 13)	(mod 10);
13 = 9 + 4,	(3, 4, 5)	
	(12, 5, 13)	(mod 6);
	(,,)	
	(,)	(mod 17);
	(20, 21, 29)	(mod 23);
	(7, 24, 25)	
	(84, 437, 445)	(mod 58);
17 = 1+ 16,	(21, 20, 29)	
	(12, 35, 37)	
29 = 25 + 4,	(77, 36, 85)	
	(8, 15, 17)	(mod 26);
17 = 1+ 16,	(39, 80, 89)	
	(20, 99, 101)	(mod 38);
53 = 49 + 4,	(112, 15, 113)	
	(40, 9, 41)	
149 = 49 + 100,	(7, 24, 25)	
	(45, 28, 53)	(mod 17);
41 = 25 + 16,	(615, 728, 953)	
	(116, 837, 845)	(mod 122);
61 = 25 + 36,	(87, 416, 425)	
	(45, 28, 53)	(mod 41).

181