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1. INTRODUCTION 

S. W. Golomb [1] defined a powerful number to be a positive integer r, such that p2 divides/* whenever the prime 
p divides r, and discussed consecutive integer pairs of powerful numbers which fall into one or the other of two types. 
The types are TYPE I: pairs of consecutive powerful numbers one of which is a perfect square, and TYPE IS: pairs of 
consecutive powerful numbers neither of which is a perfect square. He showed an infinity of cases of TYPE I by 
applying theory of the Pell equation. 

The first purpose of this paper is to elaborate on Golomb's findings for TYPE I, through theory of the Pell equa-
tion, to give all cases of that type. Then, built on that theory, the second purpose is to formulate all pairs of consecu-
tive powerful numbers of TYPE II, through certain solutions of another Diophantine equation. 

2. CONSECUTIVE POWERFUL NUMBER PAIRS OF TYPE I 

Consecutive powerful number pairs of TYPE I correspond to certain numbers satisfying the Pell equation 

(1) X2 -DY2 = ±1 , 

where D is a given positive integer not a perfect square. 
It is convenient to make the following definitions 

Definition. The number* +y\jD is a solution of (1) if x = X and y = /are integers satisfying (1). 

Definition. A positive solution of (1) is a solution x + y^jD of (D in which both integers* and y are positive. 

Although at times we will consider solutions in which x or y may be negative, our main concern is with positive 
solutions,. At all times our "integers" are assumed to be rational integers. 

Definition. The positive solution x + y^jD of (1) in which X and Y have their least values is the fundamental 
solution of (1). 

The fact that powers of the fundamental solution of (1) generate all positive solutions is well known [2] and is 
given here without proof in the following 

Theorem 2.1. Solutions of the Pell equation (1) may be formulated by the following cases. (1) If equation 
(1) with the minus sign is not solvable, l e t * +Y\JD be the fundamental solution of (1) with the plus sign. Then all 
positive solutions of the latter equation are given by 

(2) Xi-hyj^V = (x+ysfbf 

for positive integers i, and where xuy% =x,y. (2) Sf equation (Dwith the minus sign is solvable and has fundamental 
solution * + ysjD, then all its positive solutions are given by (2) for odd positive integers I In this case the funda-
mental sojution of (1) with the plus sign is (x + ysjD)2, and all its positive solutions are given by X2J+ y.2f\/D = 

[(x + yyjD)2] ' for positive integers i. 

AMS 1970 subject classifications. Primary 10B05, 10B 10; Secondary 12A25, 12A45. 
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For purposes of this paper it is convenient to write solutions in the form xj + y^D, where/ is the exponent of the 
power of the fundamental solution and not necessarily the ordinal number of the solution in sequence. Without loss 
of generality we may assume that D is square-free. 

In equation (1), for the two consecutive integersX2 and DY2, our desire that the latter be a powerful number mot-
ivates the following 

Definition. A solution u + VsjD of equation (1) has property Q if for/7 a prime, p\D implies p\v. 

Definition. The least solution with property Q is the positive solution*/ + V*JD with property Q of (1), in which 
integers u and ¥ have their least values. 

Now if equation (1) with the minus sign has a solution with property Q, then D must be odd. For if A'2 - D2 = 
- / i s solvable with D even, then no solution has property Q smce 4J(X2 + 1 = DY2 for any integer X. 

If equation (1) has the plus sign and if D is even, le t* + y\jD be any solution. Then since* is odd 

8\(x- 1)(x+1) = Dy2 , 
and 2 \ y since D is square-free. So here 2 \ D implies 2 | y. 

Now in the expaision of (2) we see that for any / 

(3) y, = ixi-1y+[i3y
i-3V3D + ~, 

where y | ylt and D is a factor of every term on the right except the first. If the fundamental solution x + y«jD of (1) 
has property Q, then it is clear from (3) that all positive solutions have property Q. Otherwise, if we take i=_Upj 
the product of distinct odd primespj such thatpj \ D hutptfy, then we see from (3) that the solution Xj + yj^JD has 
property Q. Moreover, this is the least solution with property Q since (x,D) - / and since for any h <i there is at 
least one of the primes pj such that/?y | D butp/1(/h in the solution Xh + yh\JD of (Dasgiven by (2). We have 
proved the following 

Theorem 2.2. For either choice of sign, let equation (1) have fundamental solution x +ys/D. Then 
(1). If (1) has the minus sign, and if D is even, no solutions have property Q. In all other cases (1) has a solution 

with property Q. 
(2). If the fundamental solution has property d, then all positive solutions have property Q. 
(3). If the fundamental sojution does not have property Q, then the least solution with property Q, when it ex-

ists, is the number (x + y\jD)', where the integer / is the product of the distinct odd primes dividing D but not 
dividing the integer y. 
Before considering all solutions of (1) with property Q, we need two lemmas. 

Lemma 2.3. Let a = x +y^jD and P= u + v^/D be any solutions with property Q of equation (1) with either 
choice of sign for each solution. Then _ 

(1). The product 7 = a/3 = (xu + yvD) + (xv + yu)\jD is a solution of (1) with the plus sign if a and j3 are solu-
tions of (1) with the same sign, or 7 is a solution of (1) with the minus sign for a and ̂ solutions of (1) with oppo-
site sign. 

(2). The product solution 7 has property Q. 

Proof. The first conclusion follows from 

(xu + yvD)2 - D(xv + yu)2 = (x2 - Dy2)(u2 - Dv2) = (±1)(±1) = ±1. 

Now by property Q for a and /3 if a prime p | D, then/71 / and/7 | v, sop \ (xv + yu) and 7 has property Q. 

Lemma 2.4. Let (1) with the minus sign be solvable with fundamental solution x + y>JD and haveXj + y/s/D 
the least sofutiori with property Q. Let x^ + yt^jD be the least solution with property Q. of (1) with the plus sign. 
Then xL +yL\fD = (x/ + y;s/D)2. 

Proof. By Theorem 2.1 the fundamental solution of (1) with the plus sign is 

(x + y^D)2 = (x2 +Dy2) + 2xyjD . 

By Theorem 2.2, D is odd, so (2x,D) = I Then the prime divisors of D not dividing 2xy are the same as those divid-
ing D and not y for the least solution of (1) with the minus sign which has property Q. So that by Theorem 2.1 and 
by conclusion 3 of Theorem 2.2, we have 
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XL+YLsJD = [(x+yjD)*]'1 = [(x+Vs/D)1']* = (xi + yiyJDP . 

Theorem 2.5. Let*/ + y, ^JD be the least solution with property Q, when it exists, of equation (1). Then the 
formula 

(4) Xih+VihJD = (xj + yls/D)h 

gives all positive solutions with property Q of equation (1) with the plus sign for positive integers h, and gives all 
such solutions of (1) with the minus sign for odd positive integers/?. 

Proof. For either choice of sign in equation (1), since integersx/andy/are positive, by repeated applications 
of Lemma 2,3, we see that (4) always gives solutions as described in the statement of this theorem. 

We now show that (4) gives all of the positive solutions with property Q of (1) for each choice of sign. Suppose 
that (1), for some choice of sign, has a positive solution u + VsjD, which has property Q. and which is not given by 
formula (4). Then for some positive integer/?, we have 

(5) (Xi + yiyjd)h < u + VsjD < (xi + yisjD)h+e . 

If equation (1) has the plus sign, then e= 1, or if equation (1) has the minus sign, thene= 2 with/? odd; and respect-
ively the number _ _ 

xi - yi y/D = ± 1/(XJ + Yi s/D) 

is positive or negative. For either case, multiplying inequalities (5) by ±(x; - y/yjO) , whichever is positive, gives 

7 < a= (±u±\/^/D)(xf-Yi^/D)h < 0 = (xi + Yiy/D)6• 
For both of these cases, by Lemma 2.3, the number a= w + z^jD is a solution with property Q of (1) with the plus 
sign, for some integer pair w,z. Substituting for a in the last inequalities, we get 

(6) / < w + ZsJ~D < P = (xf + Y/s/D)6, 

and the inequalities 

(7) 0 < w-Zs/D = 1/(whZyJB) < 1 

imply that both integers w and z are positive. So w + Zs/Dk a positive solution of (1) with the plus sign. But in (6) 
we have _ _ 

w + ZsjD < |8 = (xj+Yj^/D)6, 
where for e= 1 or for e = 2, by Lemma 2.4, the number 0 is the least solution with property Q of (1) with the plus 
sign, a contradiction. This completes the_proof that (4) gives all positive solutions with property Q of equation (1). 

Since equation (1) solutions (xj + y'ls/D)h with property Q correspond to consecutive powerful numbersx//, Dyf^ 
we have thus accounted for all consecutive powerful number pairs of TYPE I. 

EXAMPLES. (1) The fundamental solution 24335 + 3588V46 of X2 - 46Y2 = 1 has property Q, and hence ail 
positive solutions have property Q. The corresponding powerful numbers are 592, 192, 225^and 592, 192, 224 or 
(24335)2 and (25)(32)(132)(233). (2) The fundamental solution of X2 - 6Y2 = 1 is 5 + 2^6 . The solution 

(5 + 2V6)3 = 485+198V6" 
and all its powers have property Q. This solution leads to powerful numbers 235, 225 and 235, 224 or (485)2 and 
(23)(35)(112). (3) The fundamental solution of A* - 5Y2 =-1 is 2 + V5. The solution 

(2 + V5T)5 = 682 + 305V5 
and its odd powers have property Q.. This solution leads to the powerful numbers 465,124 and 465,125 or (682)2 

and (53)(612). 
3. CONSECUTIVE POWERFUL WUJvlBER PAIRS OF TYPE II 

Consecutive powerful number pairs of this type correspond to certain numbers satisfying the Diophantine equation 

(8) mX2 -nY2 = ±1, 

where m and n are given positive integers, and neither is a perfect square. 
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Our development of the theory of this equation proceeds along lines similar to that of the Pell equation (1). We 
begin by making the following definitions 

Definition. The numberx^Jm -f-Xy/n is a solution of (8) if x = Xandy = Kare integers satisfying (8). 
Definition. A positive solution of (8) is a solution Xsfm + yyfnoi (8) in which both integersx and y are positive. 
As before, although some solutions under consideration may have negative x ory, our main concern is with posi-

tive solutions. 
REMARK. If Xs/m +y^/n and^y/?? +y'>Jn are positive solutions of (8), then it is easily seen that the inequalities 

x < x\ y < y' and Xsfm + ysfn < x'-Jm +y'\fn 

are equivalent. So among all the positive solutions, there is one solution in which both x and y have their least values. 
Definition. The smallest solution of (8) is the positive solution x^Jm + y^Jn in which both integers X and Y 

have their least values. 
Analogous to Theorem 2.1 for solutions of the Pell equation is the theorem we now state without proof [3, Theo-

rem 9] for solutions of equation (8) 
Theorem 3.1. If equation (8) has smallest solution x<j7n + y\fi), then all positive solutions of (8) are given by 

(9) Xjs/m + yi y/n = (xy/m + ys/n)2i+1 

for non-negative integers/̂  and wherex0, yQ = x,y. 

Without loss of generality we may assume that integers/77 and n are square-free. Moreover, our desire that consecu-
tive integersmX2 and nY2 be a powerful number pair of TYPE II motivates the following 

Definition. A solution Usfm + Vyj7i a\ (8) has property Q if for/7 a prime, p\mn implies p\uv. 

Note that since (mu,nv) = 1, this definition is equivalent to saying the prime divisors of m divide*/, and those divid-
ing/7 divide v. 

Definition. The least solution with property Q of equation (8) is the positive solution Usfm + v^Jn with prop-
erty Q of (8), in which integers u and v have their least values. 

Now from (9) we getx-, and / / in the following expressions 

x, = m' x2i+1 + ...+ [ 2i+
3

 1) mn'-'xV'-2 + & + Ito'xy21, and 

Vi = (2i+1)mix2iy+ [^ * 1) mh 1nx2h2y3 + ••• + niyi V'w . ; o; t ot j . 1\ ;_1 o;_o o j 21+1 

Note that x,- and y,- have m and n respectively as a factor of every term except one, the term in each case having the 
odd positive integer-?/ + 1 as a factor. Note also that (mx,ny) = 1, X\XJ, and y\y,- . 

If one of m or n, say/77, is even, we see in (10) that x; is even for all i, if and only if x is even. Similarly, when/? is 
even, /,- is even if and only if / is even. So for the possible prime divisor 2 of m or/7, solutions with property Q of 
(8) depend solely on the parity of integersx or y respectively of the smallest solutionx-Jlh +y^Jn . 

Now from (10) if the smallest solution Xyjm + y^Jri of (8) has property Q, then all positive solutions have proper-
ty 0 since for/? a prime,/?|/77/7 impliesp\xy\x,yj . 

If the smallest solution x^/m + y^/n of (8) does not have property d, then for the odd integer 2i+ 1 in (9) and 
(10), take 
(11) 21+1 = 11/?/ 

the product of distinct odd primes pj such that/?/ | mn but pjj[xy, and the solution x,y/m ^ j / / N / ^ as given in (9) 
and (10) has property Q. Moreover, this solution obtained in (11) is the least solution with property Q of (8). This 
is due to the fact that a positive solution x^ yjm + y^ sfi, with h < i, corresponds in (9) and (10) to an exponent 
2h + /such that 2h + 1 and hence at least one of AT, or//, are not divisible by some prime divisor /?/ in (11) of/??/?.. 

We have proved the following 
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Theorem 3.2. Let equation (8) have smallest solutionx^fm + y%/n. Then (1) If m (or/7) is even and \ix (or / ) 
is odd, then no solutions have property Q. In all other cases (8) has a solution with property Q. (2) If the smallest 
solution has property Q, then all positive solutions have property Q. (3) If the smallest solution does not have proper-
ty Q, then the least solution with property Q, when it exists, is the solution*; V ^ * > 7 N / ^ 9«ven by (9) for which the 
exponent 2i + 1 is the product of the distinct odd primes dividing mn but not dividingxy. 

Throughout the remainder of this discussion we will frequently be concerned with the Pell equation which we write 
in the form 

(12) R2 -mnS2 = 7, 

and to which the same theory and definitions apply as to the Pell equation (1), since the product mn is square-free. 
Before discussing all solutions with property Q of (8), we need the following two lemmas 

Lemma 3.3. If a = u^Jm + \/\fn\% a solution with property Q of (8), and P = r + s>J(mn) is a solution of (12) 
with property Q (as defined for that equation), then the product 

y = aft = (ur + nvs)\fm + (vr + musjs/n 

is a solution with property Q of (8). 

Proof. (mu2 -nv2)(r2 -mns2) = (±1)(1) = m(ur-f-nvs)2 -n(i/r + mus)2 = ±1. 

So 7 is a solution of (8). Now by the properties Q for a and P respectively, if p is a prime and/7 \m, then/7 | (ur + nvsl 
Similarly, if a prime ^|A?, then q | (vr + mus). So 7 has property Q for equation (8). 

Lemma 3.4. If 
a = Usjm + v^/n and P = u'sjm + v'\/n 

are solutions with property Q of equation (8), then the product 

7 = aP = (muu' + nvv') + (uv' + u'v)sj(mn) 

is a solution with property Q of (12). 

Proof. (mu2 -nv2)(mu'2 -nv'2) = (±1)(±1) = (muu' + nvvl2 - mn(uv'+ u'v)2 = 7, 
and 7 is a solution of (12). Now by property Q for a and /^solutions of (8), the prime divisors of m divide both*/ and 
u\ and prime divisors of/7 divide both v and v'. So if a prime/? IJ/T?/?, \\\vx\p\(uv' +U'V), and 7 has property Q for (12). 

Theorem 3.5. Let x/y/m + y,y/n be the least solution with property Q of (8), when it exists. Then all posi-
tive solutions of (8) with property Q are given by the formula 

(13) xH^m+yH^n=(xjjm+yjjn)2h+1 

for non-negative integers/7. 

Proof The subscript// = 2ih +i + h, by Theorem 3.1. Since x/v^? + y,y/n~\$ the least solution with property Q 
of (8), then by Lemmas 3.3 and 3.4 formula (13) gives a positive solution with property Q of (8) for every non-
negative integer h. _ _ 

Now suppose equation (8) has a positive solution Wyjm +ZyJn, with property Q, which is not given by (13). Then 
for some non-negative integer/?, we have 

(14) (xjsjm+yj^n)2h+1 < Wsjm+Zyjn < (xfy/m + yi^n)2h+2 . 

The number _ 
Xjsfm -y/y/n = ±1/(xj^/m+yj>Jn) 

is positive or negative, respectively, according as equation (8) has the plus or minus sign. For either case, multiplying 
inequalities (14) by ±(x,\fm - y,-y/n) whichever is positive, we get 

(15) 7 < a= (±WyJm ± Zyfn Hxjyfm - yjyjn ) 2 h + 1 < p = (x/y/m+yis/n)2 

By Lemma 3.4, and since integers*/and//are positive, the numberP= (xjyfm + y,\]n)2 is a positive solution with 
property Q of (12). We will now show that P is the least solution with property Q of (12). Suppose on the contrary 
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that the number /y + Sjs/(mnT is the least solution with property Q of (12). By Theorem 2.1, 

rj + SjsJ(mn) = [r + s^J(mn) ]J, 

where r + S\/(mn) is the fundamental solution of (12), for some positive integer/ By Theorem 2.2., the integer/is 
odd, and by [3, Theorem 6] the number 

r + s^J(mn) = Ixsfm+y^fri)2 , 

wherexV^ + Y\Jn is the smallest solution of (8). A substitution gives 

rj + Sjyjlmn) = [(xjm + yjn)2]i = f(xy/m +yjn)J]2 . 
By Theorem 3.1, and since/ = 2k + 1 is odd, 

(xs/m+ys/F)J = (xs/m+ysfn)2k+1 = xksfm+yk>Jn , 

the kth positive solution of (8). Then 

rj + $jsj(mn) = (xks/m + yksfn)2 = mx\ + ny2
k+2xkyks/(mn) . 

Now since rj + Sj^/fmn) has property Q for (12) and since Sj = 2xkyk it follows that if a primep\mn, thenp\2xkyk. 
In fact if a prime p \mn, then p\xkyk, This is obvious if p is an odd prime. Since equation (8) is assumed to have 
a solution with property Q, then by Theorem 3.2 if J?|/T?/7, then 2 \xy\xkyk for all k, and where integers x,y are those 
of the smallest solutionXs/m +y^fn of (8). So the positive solutionxk\Jm +yk sj~n of (8) has property Q. 

Then if 
r/ + Sjyf(mn) < j3 = (xjyjm + y/s/n)2, or (xksjm + yk«Jn)2 < (x/s/m +y,>Jri)2, 

it follows that 
xk v ^ +Yk\fn < xi \/m + Yi y/n 

the least solution with property Q of (8), a contradiction. Thus we have shown the number f}= (x/^/m + y/\/n~)2 of 
inequalities (15) to be the least solution with property Q of (12). 

Now consider the number a of inequalities (15). By Lemmas 3.3 and 3.4 the number a= u + VsJ(mn) is a solution 
with property Q of (12), for some pair of integers u and v. So that inequalities (15) become 

(16) / < u + vjTmn) < (xlS/m-f-y/s/n)2 . 

Then since u + v^J(mn) is a solution of (12), the inequalities 

0 < u-vsj(mn) = 1/[u + VsJ(mn)] < 1 

imply that integers u and v are both positive, and u + v^J(mn) is a positive solution of (12). 
We have shown that the existence of a positive solution w-Jm + ZyJn\N\\h property Q of equation (8), which is not 

given by formula (13), implies the existence of a positive solution u + v-s/(mn), with property Q, of equation (12), 
which by (16) is less than (xj*Jm + y/s/n)2 the least solution with property Q of (12), a contradiction. This com-
pletes the proof that formula (13) gives all positive solutions with property Q of equation (8). 

Since equation (8) solutions (x/s/m + y,sjh~) with property Q correspond to consecutive powerful numbers 
mx2

H nyl/we have thus accounted for all consecutive powerful number pairs of TYPE II and hence, with Section 2 
of this paper, for all pairs of consecutive powerful numbers. __ 

EXAMPLE. The equation 7X2 - 3Y2 = 7 has smallest solution 2^/7 + 3-J3. The solution 
(2y/7 +3yj3)n = 2,637,362^7+ 4,028,637^3 

and all its odd powers have property Q. This solution corresponds to the following consecutive powerful number 
pair of TYPE II, 

48,689,748,233,308 = 7(2,637,362)2 = (22)(73)(732)(432)(3372) 
and 

48,689,748,233,307 = 3(4,028,637)2 = (3*)(1392)(96612). 
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