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H-264 Proposed by L Carlhz, Duke University, Durham, North Carolina. 

Show that 
m-r n-s 
XT* ls+i\(m+n-s-i+l\ = ST* I r + i \ I m + n - r - / + 1 \ 
i M / )[ n-s ) " Ls [ i J [ m-r ' 
i=0 i=0 

H-265 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that F 3 k„7 = 0 (mod 3*), where k > 1. 

H-266 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

Find all identities of the form 

k=0 
with positive integral r, s and t 

SOLUTIONS 

TRIPLE PLAY 

H-238 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Sum the series 

S = £ xmynzp , 
m,n,p=0 

where the summation is restricted to m,n,p such that 

m < n +p, n < p+m, p < m + n. 

Solution by D. Russell, Digital Systems Lab, Stanford, California. 

If m + n + p is even, then either (1) exactly one of m, n, or p is even, or (2) all of/??, n, and/7 are even. In either 
case, m +n - p is also even. Leta= 1Mm + n - p), and similarly le t£= 1Mn +p - m) and c= 1Mp +m - n); because 
of the restrictions, all of a, b, c are non-negative. Then m = a + c, n = a +b, and p =b + c, and 

xmynzp = xa+cy*+t>zt>+c = (xy)a(yz)b(xz)c. 

This is a general term of the generating function 
7 Tt even (1-xy)(1-yz)(1-xz) 
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and it is easily seen that all tem$xmynzp of 7"even satisfy the restrictions and that m+n+p\s even. 
Consider the terms where m + n + p is odd and m + n + p > 3 (no terms exist with m +n+p = \). Either (1) ex-

actly one of m, n, or p is odd, or (2) all of m, n, and/? are odd. In either case, in the restriction m <n + p, equality 
may not hold, since then one side of the relation would be even and the other would be odd. But if m <n + p, then 
m - 7 <n +p -2. Let m' = m - 7, n' = n - I p'= p - I lhmxm yn zp satisfies the restrictions and / T J ' ^ ^ ' ^ P ' 
is even. The terms 

xmynzp = (xyz)xm'yn'zp' 

with m + n+p odd are thus terms of the generating function T0^ = xyzTeyen and all terms of 7"0dd are easily seen 
to satisfy the restrictions with m + n +p odd. 

Since m + n + p is either odd or even, the sum S is given by 

q 7 +xyz 
" (1-xy)(1-yz)(1-xz) ' 

Also solved by P. Bruckman, W. Brady, M. Klamkin, 0. P. Lossers, A. Shannon, and the Proposer. 

FERMAT' INEQUALITY 

H-239 Proposed by D. Finkel, Brooklyn, New York. 

If a Fermat number 2 + 1 is a product of precisely two primes, then it is well known that each prime is of the 
form 4A?7 + 1 and each has a unique expression as the sum of two integer squares. Let the smaller prime be a2 +b2, 
a > b; and the larger prime be c2 +d2, c> d. Prove that 

\c d\< 1 
\ a b\ 100' 

Also, given that 2 2 ' + 1 = (274,177) (67,280,421,310,721) and that 274,177s5 51€2 +89*, express the 14-digit prime 
as a sum of two squares. 

Solution by the Proposer. 

It is well known that 

(1) (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad - be)2 = (ac - bd)2 + (ad + be)2. 
Let c/a = r and d/b = r'. Then 

(2) (a2 +b2)(c2 +d2) = (a2r + b2rT +(abrf-abr)2 = (a2r-b2rr)2 + (abrJ' + abr)2 . 
One of the four squares on the right-hand side of (2) must be 1 2 . Takings, b, c, andtf as positive, it is obviously not 
the first one on the top line or the last one on the bottom line. Clearly ac > bd and thus (a2r- b2r')2 > 1. Hence, 

(abr'-abr)2 = P or I r ' - r l = ~ . 1 ' ab 
The smallest Fermat number which is a product of exactly two primes is 22 5 + 1 = (641 )(6,700,417). Here 641 = 
252 +4 2 and ab = 100. No other Fermat number can have an ab product as low as 100.* Hence the result, 

U_ d\ < _i_ 
\a b\ " 100 ' 

follows. For the last part of the problem, let the smaller prime b e ^ = a2 + b2 and the larger prime be 

p2 = c2 +d2 = a2r2 +b2(r')2 . 
Now rand /a re approximately equal m&p2/px ~ r2. Since c = ar and d= hr', a simple calculation leads to 

p2 = 80831112 + 13941802 . 

*Beiler, Recreations in the Theory of Numbers, pp. 143, 175. 
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EGAD 
H-240 Proposed by L Carlitz, Duke University, Durham, North Carolina* 

Let 
m\n(n,p) mi+(n-i)(p-i) 

S(m,n,p) = (q)n (q)p T] , , , . , . 
i=0 

where 
W / = f / - q)(1 - ?V .» f / - qj), (q)o = 1-

Show \\\dXS(m,n,p) is symmetric in m,n,p. 

Solution by the Proposer. 

Put 

e(x) = ff (1-qnxr1 = T j-r . 
n=0 *~i Wn 

n=0 
It is well known and easy to show that 

oo 

E M_n_ n = e(x) 

(q)„ e(ax) ' 
n=0 

where 
(a)n = (1 - a)(1 - qa) - (1 - qn'1 a), (a)0 = 1. 

It follows that 
oo oo oo. oo oo 

r,s=0 r=0 s=0 r=0 r=0 

so that 

Then 

E qr xrys
 = e(x)efy) 

n (q)r(q)s efxy) ' 
r,s=0 

efx)e(y)efz) = e(x)efyz) e(y)e(z) 
e(xyz) e(xyz) e(yz) 

r.mi+jk V qmixm(vzr v * qjkvizk _ V xmynzP V s i 
~ , (q>m(q)i .f"n (q)j(q)k ' ^ „ <q>m .$* (q)i(q)j(q>k 

m,i=0 J,k=0 J m,n,p=0 i+j=n ' 
i+k=p 

E Xmynzp V * qrni+(n-i)(p-i) 

n (q>m — (q)i(q)n-i(q)P-i 
m,n,p=0 i=0 H 

so that 

vm..n_p 
BjxMiMil = y _ ^ V L _ s(mnp) 

eixyzi L (q)m(q)n(Q)P ' " P 

m,n,p=0 

The stated result follows at once. 

REMARK. Since 
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J _ - V (-1\» q1/2n(n-1)zn 

e(z) - Z - , { 1} (a)n 
n=0 / 

it follows from (*) that 

6d?!L 
m,n,P=0 — - ij.k-0 —Wlk S = 0 

so that 
min (m,nj)) 

*-* (q)s(q)m-s(q)n-s(q)P-s 
s=0 ^ 

HARMONIC 

H-241 Proposed by R. Garfield, College of Insurance, New York, New York. 

Prove that 
n-J 

1 _ / v 7 hT. n n ^ j 2k7T . 
K u 1-xe n 

Solution by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Using partial fractions, we have 
n-1 

1 _ 1 _ y* Ak 

* - 1 k=0 x - e — ' 

As-1) 
[e.g., see Edwards, Integral Calculus, Vol. 1, p. 145.1 

n-1 n-1 n-1 

i n 2-* 2irk(n-1). I 27Tk. \ n Ls 2nk(n-1) n *-* 2lTk 
1~X k=0 ne~"* ' [ x-e"^' j k=0 i -xe~» k=0 1-xe n 

since (n, n- V= I 

Also solved by C Bridger, P. Smith, and the Proposer. 
PELL-MELL 

H-243 Proposed by G. Wulczyn, Bucknell University, Lewisburg, Pennsylvania. 

Show that for each triangular number tn = ^(n+ 1) there exist an infinite number of nonsquare positive integers 
D such that t*+r- t^D = 1. 

Solution by the Proposer. 

In the Pellian equationx2 - Dy2 = 1, letx = tmtn+i, y= tn, mn ? 0. 

[(mt2n + 1)(mtn + 2)+2] [(mt2 + 1)(mt2n + 2)-2] = 4t2nD. 

[m2tn + 3mt2n+4](m2tn+3m) = 4D. 
The left-hand side is congruent to zero modulo 4 for the conditions (1) m an even integer, (2) m odd, tn odd, (3) 

m odd, tn even. Hence D is an integer, and not an integer square since the difference of these two integer squares 
is never one. 


