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Denote the polynomials defined indirectly and recursively by my Theorem [1] by ?2n+iM so that 

Px (x) = x, P, (x) = 5x> + 3(~ 1)kx, P5 M = 25xs + 25(- Vkx3 + 5x, 

P,(x) = 125X1 + 175(-1)kxs + 70x3 + 7(-1)kx, 

P9(x) = 5Ax9°+32-53(-1)kx1 + 33-52x5 +2-3'52(-Vkx3 +32x, 

PJx) = 55xll+5*>11(-1)kx9 + 22«53-11x1 +527.11(-1)kx5 +5211x3 + 11(-1)kx, 

PJx) = 56xl3+5513(-1)kx11 + 5513x9 + 22-3>53 13(-1)kxn + 2>527-13xs + 5-7-13(-1)kx* + 13x, 

PJx) = 5nx15 +3*51(-Vkx13 +2-3256x11 + 5611(-1)kx9 +2-325sxn + 2-33527(~1)kx5 

+ 22527x3 +3>5(-Vkx . 

Theorem [1] may be written as 

Theorem 1. 

in p2n+iM = 5°x2n+i-Y, (n
2:;is) [<-i)k+iin+i-sp2s-iM. 

s=1 

The following Theorem 2 gives an explicit expression for these polynomials: 
Theorem 2. 

n 
(OS P^ <(v\ - V K^n 1}kr (2n + 1)[(2n-r)!] 2n+1-2r 

Proof. The polynomials P3 (x) obtained by substituting n = 1 into Eqs. (1) and (2) are easily shown to be identical. 
Using the second principle of mathematical induction, assume that (1) and (2) express identical polynomials P2s+lM 
for all s <n [2 ] . Substituting the expression (2) into the right-hand side of Eq. (1), it will be shown that the resulting 
expression for P2n+i(*) is identical to that as determined by Eq. (2). Thus, Eq. (1) becomes 

p2n+iM = 5 V + 7 - £ ( / ; ; _ ' , ) [(-vk+1]n+1-sp2s-iM. 
s=1 

where 
s-7 

Pn <M = V Rs^'ryc2s'1'2f(-1)kr (2s-1)[(2s-2-r)!] 

r=0 

Rearranging terms and changing the variable of summation by t = s- r- I eliminating r, and interchanging the order 
of summation on t and s obtain: 

197 
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(3) P2n+1M = 5"x2n+1 - £ 5U-1)kn-kt+n+1 l 2 " ( 2 t ^ r • Q. 

where 

Q = E ^i^f= (2s-1)[(s + t-1)!] 
1)!(n-s+1)!(n+s)! 

S=t+1 

Expression Q may be summed using the antidifference method as 

Q = ~(-~1)s(s + t-W s^n+1 __t-i\n+1 (-1)nTl(n + t)! 
,=tH (n-t)(2n)!(n-t-D! ' 

p2n+lM - ^ ' , E <-i^-<> 0tm^-(n+t)l 

(n— t)(n - 5 + 1)!(n + s - 1)!(s - t - 2)! 

Substituting the latter for Q in (3) above and simplifying, obtain 

(4) 

Finally, changing the variable of summation to r = n - t, and noting the first term is represented with r= 0, Eq. (4) 
becomes (2) as desired. 

Theorem 3. P(2m+ D (2n+D M = P2m+1 (P2n+1M). 
Proof. Each of the polynomials is of degree (2m + 1)(2n + 1), and since the same Fibonacci number, namely, 

F(2m+D(2n+i)k> is obtained forx = F^, k= 1, 2, 3, —, the polynomials have identical values for an infinite number 
of arguments, and thus by a well known property of polynomials, the polynomials in x are identical [3 ] . 

Theorem 4. 

(5) P2n+sM = [5x2 + 2(-1)k] P2n+3(x) - P2n+1(x) -
Proof. Substituting (1) into the right-hand member of Eq. (5) above, and multiplying by [5x2 + 2(-1)k], one 

obtains three summations: 

n+1 

E t-n+2-r, lSkr (2n + 3)[(2n + 2 - r)!] 2n+5-2r 
5 { ' V r!(2n+3-2r)! * 

n+1 
4.XT Rn+1~n *1*fr*D 2(2" + 3)[(2n +2- r)!] „2n+3-2r 

2 - , 5 (~1} r!(2n+T^2F)!~ * 

n 

E qn-r, nkr (2n + 1)[(2n - r)!] 2n+1-2r 
5 f " r!(2n+1-2r)! * 

r=0 

Replacing r by r - 1 and r - 2 in the second and third summations, respectively, each summation has the common 
factor 5n+2~r(-1)k rx 2n+5~2r

 w i th the range of summation overlapping forr = 2ton + 1 as follows: 

n+1 

E t-n+2-r, iikr (2n + 3)[(2n +2-r)!] 2n+5-2r b (~1J ~ni2n^r^jr * 
n+2 

+ V trn+2-r( i\kr 2(2n +3)[(2n + 3 - r)! 2n+5-2r 
+ l a * (-JJ T^JT!(2n + 5~2r)! * 

r=1 
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n+2 

E rn+2-n nkr (2n + 1)[(2n + 2- r)l] „2n+5-2t 
l"U (r-2)!(2n+5-2r)! X 

r=2 
Collecting the overlapping portion of the summations in a single summation and simplifying the remaining individual 
terms, one obtains: 

n+1 ( \ 

E 5n+2-r( 1}kr2n+5-2r ) (2n +3)[(2n+2- r)l] , 2(2n+3)[(2n+3 -r)!] (2n+1)[(2n+2- r)f] [ 
^2 ) r!(2n + 3- 2rH (r- 1)!(2n +5-2r)\ ~ (r- 2)!(2n +5- 2r)l I 

(6 ) +Sn+2x^^ + Sn+U-1)k(2n + Shc^+3 + (2n+5)(^1)knx. 

The expression within the brace of Eq. (6) becomes 
(2n + 2-r)![(2n+3)(2n + 5-2r)(2n+4-2r) + 2r(2n + 3)(2n+3-r)-r(r-1)(2n+1)] 

r!(2n+5-2r)I 

= !??+l~-)rT7 ttn* +48n2+ 94n - 8m2 - 34m + 2r\n + 5r* - 35r + 60] 
r!(2n + 5- 2r)l 

= , / ? ? ? " ? . , [<2n+5H2n+4-r)(2n+3-r)l « {2" + ?,{li2"+*Z!,)U -r!(2n +5- 2r)l r!(2n + 5-2r)f 

Substituting this simplified result for the brace in (6) and noting the three individual terms in (6) from the summa-
tion general summation term with r= 0, 1, and n +2, respectively, Eq. (6) becomes P2n+sM as expressed by (2). 

Theorem 5. 
(7) [5x2 + 4(~1)k]P'2n+lM + 5xP'2n+iM- 5(2n + 1)2P2n+lM = 0 . 

Proof. Differentiating (2) and substituting into the left-hand member of (7), multiplying the binomial [5x + 
4(-1) ] appropriately in (7) to form two summations and changing the index of summation r to r- 1 in the sum-
mation formed from 4(-1)kP'2n+i(x), one obtains four summations with like general terms inx with the range of 
summation overlapping from r= 1 to n - I Factoring out the common factors, the left-hand member of (7) becomes 

y .5^"U2n + 1M:Vkr(2n-r)l I (2n_2r + J)(2n_2r) + 4r(2n.r+1) +(2n+l-2r)- (2n +I)2 \x2n+1~2r 

L^t r! (2n - 2r+ 1)1 < ' 
r=1 
+ 5n+1(2n + 1)[(2n)!]x2nH

 + 5(-1)kn(2n + 1)[(n + 1)!]4x + 5n+1 (2n+1)[(2n)!]x2n+1
 + 5(-1)kn(2n+1)[n!]x 

Of (2n - 1)1 (n - D! 1! 0! (2n)f n! 0! 

5nH(2n+1)3[(2n)!]x2n+1 __ 5(-1)kn(2n + 1)2(n!)x 
01 (2n + 1)! nf 1! 

The expression within the brace of the summation is easily shown to be zero, and the remaining six individual terms 
are easily shown to be zero also. 

Theorem 6. The polynomials P211+1M satisfy 

P2n+1M = -jL- T2n+1 ( ^ / ) or (-V JL T2n+1 ( - i ^ x ) 

according to k odd or even, where T2n+iM is the Chebyshev polynomial of the first kind [4]. 
Proof. For k odd, 

/ W W - - ^ l i , + f ( f * ) f and ^+IW - X ^ ( ̂  J-
by applying the chain rule. 
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Substituting into (7) and changing the variable* to z by x - (2/\Js)z, obtain 

(1-z2)T2n+l(z)-z.f2n+l(z)+(2n+1)2T2n+lM s 0 

defining the required polynomials [4: 22.6.9 p. 781]. The case for k even may be handled similarly. 
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[Continued from page 196.] 

L&t k>0,2\k, K:=4k + 3; the conditions 
Vk+I?k + Vkrk+1 = 2K, 0 < rk+t < 2vk+1, 2/f rk+1 

define the integers rk+-j, rk uniquely. Then 2rk+i <rk. Let 
. rj := 2rj+7 + r/+2 (j = k-1,k-2, »., 1); 

0 < 2rj+1 < rj, 2J[r/~2J[j, Vj^rj + vjrj^ - 2K (j = k-1,k-2,~, 1); 
j= 1 gives #> ^ 

2r1+r2 = 2K, 0 < 2r1 < 2K. 
IS l* if 

ls\yk := 2*2 +rj, xk := 3yk+2 ;then2-2 < yk,2j(yk,2/\xk.The defining equation for xk gives 
H(xk, yk) = 2. The defining equations forxk, yk, q (j= 1, 2, - , k - 1) are the beginning of &.. algorithm by greatest 
and by nearest integers forxk, yk and therefore N(xk, yk) > k. For an arbitrary integers > 0, \etgs :=xs,hs := ys 

in case 2\s and gs :=xs+f, hs := ys+f in case 2 Jf s. This proves 
Theorem 2. For every integer s > 0 there exist odd integers gs > hs > 0 with E(gs, hs) > N(gs, h$) >s, 

H(gs,hs)=l 
Nothing is known about the average size of H(a,b). 


