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Bromwich [1] f p. 24, attributes the formula 

(1) _ i _ + _ * ! _ + _ * ! _ + ... + J^- * A l_ 
1-x% 1-x4 1-x* 1-x2n 1~x 1-x*n 

to Augustus de Morgan, together with the corresponding sums of the infinite series, namely x(1 - x)-1 if |*| < 1, and 
(1 - x)'1 if |*| > 1. As far as the authors know, the following generalization has not yet appeared in print. 
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is equal to the sum of all those powers ofz where the powers are multiples of m" but not multiples of tnn+ . Therefore 

(3) y _£? (1-zm (m^!l , _ j L_ (\z\<1). 
n=0 (1-Z<» )(1-z

m ) 1-Z
m 

On replacing z by y/x we obtain (2), and, on allowing N to tend to infinity we obtain, if \x\ ^ \y \, 
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where min (abs) fx,^ signifies x or ̂ depending on whether \x \ < | / |o r |x | > | / | * respectively. 
To obtain examples, let a and h be positive integers and let un be the denominator of the (n - Vth convergent of the 

continued fraction , , , 
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(5) un - -p^L . 
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where 
y - a + J(a2+4b) n . a-J(ar+4b) 
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Now putx = % m&y = Vk in (2), where k is a positive integer, and we obtain 

(B) f (-HI*'''''**'**.,, , g W*"™ 
~ Ukmnukmn+1 ukmn+* 
n=u 

When £ = /the formula simplifies somewhat. When a = b= 1, then un = Fn, the /?f/* Fibonacci number. 
Some specM rases nf these formulae are 

(7) ^ + £ 1 2 ^ + 2 ^ , . . . . , (x = 2fy=hm=M))] 
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(9) k ^ k + k + . . . = i Z l ^ I fe-6-*-/,/»=3in«)f«yV^-A-

(where £j = 7, L2 =3, L3 =4, L4 = 7, -are the Lucas numbers), 

(10) FJL+FJL+ f± + ... = tz.s/E 
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(11) Y\ Lk3n = (J5-7)k ^ y » fAr3n = ^ 5 - 1)k 

Further generalization. Formulae (2) and (4) can be further generalized to 

M „ K. = y Xn+lYn-*nVn+1 + K m _ 
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where \xn\ and j ^ o } are any sequences of real or complex numbers, with xntynVn, and 
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Although (12) is more general than (2), its proof is obvious. A special case of (13), after a change of notation, is 

( 1 4 ) y Ms(n)[xs(n+1hs(n) - ys(n+1hs(n}] __ ys(m) 

, ~ fxs(n)_ys(n)j[xs(nH)_ys(n^1)j xs(m) _ ys(m) 

if \x\ > \y\ and s(n) -*• «> as n -» <*>. 
Now put A- = 5, y= r\ and we obtain 
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and in particular 
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h~~^ra^7~M-T-) /Fs(0)-n=0 

For example , \U(n)= Fn+1, 

p° 

hi) V €n Fn - =*BL=J where e « J 1 if /? = 0 or 1 (mod 3) 

and \is(n)= Ln+1, 

(18, f JL^.^/. 

Putting s M = fa * 7^r in (16) gives 

~ F(n+i)kF(n+2)k Fj? 

Put t ing^ = (n +2)c and yn = 1 in (13) gives, after a change of notation, 

(2o> J2 — ( ^ . n i ^ i i — . -i— (C > D. 
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ft\VLmxn = 8<n+1)t, yn=e~(n+1)t in (13) gives 

(2D V L = _ d l 
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Historical note. The formula 
( 2 2 ) ^ 3 = 2 ~ 4 ~ 4J4 " 4.14.194 " ' " ' 

where 14 = 42 - 2, 194 = 142 - 2, - , was drawn to the attention of I. J. Good by Dr. G. L Camm in November 
1947. (The sequence 4, 14, 194, — occurs also in tests for primality of the Mersenne numbers [4 ] , p. 235.) The 
similar formula 

(23) 

where 
m + 1 

- (r-Van r^J(l_ + _!_ + . \ 

r > I ax = 2 ^ - j , an+1 = a£-2, |30 = /, Pn = a1a2-of1 

was given in [ 3 ] ; and formula (8) in [2] and [6] . Hoggatt [5] then noticed that 

T -1-
^ Fk2» n k2" 

could similarly be summed. All these results follow from deMorgan's formula. S. J. Good noticed the generalization 
(4) in November 1947, but at that time did not see its application to the Fibonacci and similar sequences and there-
fore withheld its publication. P. S. Bruckman independently, and recently, noticed the more general formula (14). 
Alternate methods of proof appear in [7 ] . 
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ON THE HARRIS MODIFICATION OF THE EUCLIDEAN ALGORITHM 

G.J. RIEGER 
Institut fii'rMathematik, Technische Universitat Hannover, Hannover, Germany 

V. C. Harris1 (see D. E. Knuth2 also) modified the Euclidean algorithm (= algorithm by greatest integers) for find-
ing the gcd of two odd integersa>A > 1. The conditionsa = bq + r, \r\ <b, 2\r define the integersq,r uniquely. In 
case r=0, stop. In caser^O, divider by its highest power of 2 and obtain*? (say); proceed with/?, \c\ instead oia,b. 
Denote by H(a,b) the number of steps in this Harris algorithm. 

Example: 83 = 47-1+4.9, 47 = 9-5 + 2.1, 9 = 1-9; //(83,47) = 3. 
Denote by E(a,b) resp. N(a,b) the number of steps in the algorithm by greatest resp. nearest integers for a > b > 0. 

According to Kronecker, N(a,b) < E(a,b) always. In this note we prove that H(a,b) is sometimes much larger than 
E(a,b) and sometimes much smaller than N(a,b). 

Let 
L . , c0 := I cn+i = 2cn + 5 (n > 0); 

obviously 
r u . E(cn+1,cn)<5 (n > 01 
Furthermore, since , • , _ 

Cn+2 = 3cn+i - 2cn, 2\ cn (n > 0), 
the choice ak = ck/ bk = ck- / (k > 0) gives 

Theorem 1. For every integer k > 0 there exist odd integersak>bk>Q with 
E(ak,bk) < 5, H(ak,bk) = k. 

Let 
vo '= 0, v1 := 1, vn := 2vn„1 + vn-2 (n > 1); 

then_ 
ton+U Vn) = h *n < 3n"1, 2\vn ~ 2\n (n > 0). 

1 The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), pp. 102-103. 
2 The Art of Computer Programming, Vol. 2, "Seminumerical Algorithms," Addison-Wesley Pub., 1969, pp. 300, 316 

[continued on page 200.] 


