SOME BINOMIAL SUMS

L. CARLITZ

Duke University, Durham, North Carolina 27706

1. Put
(1.1)

$$
A(n)=\sum_{k=0}^{n+1}(-1)^{k}\left\{\binom{n}{k}-\binom{n}{k-1}\right\}^{3}
$$

where it is understood that

$$
\binom{n}{-1}=\binom{n}{n+1}=0 \quad(n \geqslant 0)
$$

Consideration of this sum was suggested by the following problem proposed by H. W. Gould [1]. Let

$$
A_{p}(n)=\sum_{0 \leqslant 2 k \leqslant n}(-1)^{k}\left\{\binom{n}{k}-\binom{n}{k-1}\right\}^{p}
$$

Then

$$
A_{2}(2 m+1)=(2 m+1) A_{1}(2 m+1)
$$

It is noted that this result does not hold for even n.
Since

$$
A(n)=\sum_{k=0}^{n+1}(-1)^{n-k+1}\left\{\binom{n}{n-k+1}-\binom{n}{n-k}\right\}^{3}=\sum_{k=0}^{n+1}(-1)^{n-k+1}\left\{\binom{n}{k-1}-\binom{n}{k}\right\}^{3}
$$

so that
(1.2)

$$
A(n)=(-1)^{n} A(n),
$$

therefore
(1.3)

$$
A(2 m+1)=0
$$

However (1.2) gives no information about $A(2 m)$. By (1.1) we have

$$
\begin{aligned}
& A(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3}-3 \sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}^{2}\binom{n}{k-1}+3 \sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n}{k-1}^{2} \\
& -\sum_{k=1}^{n+1}(-1)^{k}\binom{n}{k-1}^{3}=2 \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3}-3 \sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}^{2}\binom{n}{k-1}+3 \sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n}{k-1}^{2} .
\end{aligned}
$$

Supported in part by GP-37924.

Thus if we put

$$
\begin{gathered}
S_{0}(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3}, S_{1}(n)=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}^{2}\binom{n}{k-1}, \\
S_{2}(n)=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n}{k-1}^{2},
\end{gathered}
$$

it is clear that

$$
\begin{equation*}
A(n)=2 S_{0}(n)-3 S_{1}(n)+3 S_{2}(n) . \tag{1.4}
\end{equation*}
$$

In the next place, we have

$$
\begin{aligned}
S_{2}(n)=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n}{k-1}^{2} & =\sum_{k=0}^{n+1}(-1)^{n-k+1}\binom{n}{n-k+1}\binom{n}{n-k}^{2} \\
& =\sum_{k=0}^{n+1}(-1)^{n-k+1}\binom{n}{k-1}\binom{n}{k}^{2}
\end{aligned}
$$

so that
(1.5)

$$
S_{2}(n)=(-1)^{n+1} S_{1}(n)
$$

and (1.4) becomes
(1.6)

$$
A(n)=2 S_{0}(n)-3\left\{1+(-1)^{n}\right\} S_{1}(n)
$$

In particular we have

$$
\left\{\begin{array}{l}
A(2 m)=2 S_{0}(2 m)-6 S_{1}(2 m) \tag{1.7}\\
A(2 m+1)=2 S_{0}(2 m+1)
\end{array}\right.
$$

It is well known (see for example [2, p. 13] , [3, p. 243]) that $S_{0}(2 m+1)=0$, while

$$
\begin{equation*}
S_{0}(2 m)=(-1)^{m} \frac{(3 m)!}{(m!)^{3}} \tag{1.8}
\end{equation*}
$$

However $S_{1}(n)$ does not seem to be known.
2. In order to evaluate $S_{1}(2 m)$ we proceed as follows. We have

$$
\begin{aligned}
& S_{1}(n)=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}^{2}\left\{\binom{n+1}{k}-\binom{n}{k}\right\}=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}^{2}\binom{n+1}{k}-S_{0}(n) \\
&=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n+1}{k}\left\{\binom{n+1}{k}-\binom{n}{k-1}\right\}-S_{0}(n)
\end{aligned}
$$

so that
(2.1)

$$
S_{1}(n)=T_{0}(n)-T_{1}(n)-S_{0}(n)
$$

where

$$
T_{0}(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k}^{2}, \quad T_{1}(n)=\sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k}\binom{n+1}{k}\binom{n}{k-1},
$$

Now

$$
\begin{aligned}
T_{1}(n) & =\sum_{k=0}^{n+1}(-1)^{n-k+1}\binom{n}{n-k+1}\binom{n+1}{n-k+1}\binom{n}{n-k} \\
& =(-1)^{n+1} \sum_{k=0}^{n+1}(-1)^{k}\binom{n}{k-1}\binom{n+1}{k}\binom{n}{k},
\end{aligned}
$$

that is,
(2.2)

$$
T_{1}(n)=(-1)^{n+1} T_{1}(n)
$$

Therefore $T_{1}(2 m)=0$ and (2.1) yields
(2.3)

$$
S_{1}(2 m)=T_{0}(2 m)-S_{0}(2 m)
$$

In the next place

$$
\begin{aligned}
T_{0}(n)= & \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k}^{2}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{n-k}\binom{n+1}{n-k}^{2} \\
= & (-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k+1}^{2}=(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k+1}\left\{\binom{n+2}{k+1}-\binom{n+1}{k}\right\} \\
= & -(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k+1}\binom{n+1}{k}+(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+2}{k+1}\left\{\binom{n+2}{k+1}-\binom{n+1}{k+1}\right\} \\
= & -(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k+1}\binom{n+1}{k}+(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+2}{k+1}^{2} \\
& -(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k+1}\left\{\binom{n+1}{k}+\binom{n+1}{k+1}\right\} \\
= & -2(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k}\binom{n+1}{k+1}-(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k}^{2} \\
& +(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+2}{k+1}^{2},
\end{aligned}
$$

so that
(2.4)

$$
\begin{aligned}
&\left\{1+(-1)^{n}\right\} T_{0}(n)=-2(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+1}{k}\binom{n+1}{k+1} \\
&+(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+2}{k+1}^{2} .
\end{aligned}
$$

For $n=2 m+1,(2.4)$ gives no information about $T_{0}(2 m+1)$; indeed each sum on the right vanishes. For $n=2 m$, however, (2.4) becomes

$$
\begin{aligned}
2 T_{0}(2 m)= & -2 \sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k}\binom{2 m+1}{k}\binom{2 m+1}{k+1} \\
& +\sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k}\binom{2 m+2}{k+1}^{2} .
\end{aligned}
$$

It is known [3, p. 243] that

$$
\begin{equation*}
\sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k}\binom{2 m+1}{k}\binom{2 m+1}{k+1}=(-1)^{m} \frac{(3 m+1)!}{m!m!(m+1)!} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k}\binom{2 m+2}{k+1}^{2}=(-1)^{m} \frac{2(3 m+2)!}{m!m!(m+1)!(2 m+1)} . \tag{2.7}
\end{equation*}
$$

Substituting from (2.6) and (2.7) in (2.5), we get

$$
\begin{equation*}
T_{0}(2 m)=(-1)^{m} \frac{(3 m+1)!}{(m!)^{3}(2 m+1)} \tag{2.8}
\end{equation*}
$$

Therefore by (2.3) and (1.8)

$$
\begin{equation*}
S_{1}(2 m)=(-1)^{m} \frac{(3 m)!}{m!m!(m-1)!(2 m+1)} . \tag{2.9}
\end{equation*}
$$

Finally, by (1.6) and (2.9),

$$
\begin{equation*}
A(2 m)=-2(-1)^{m} \frac{(3 m)!(m-1)}{(m!)^{3}(2 m+1)} \tag{2.10}
\end{equation*}
$$

This completes the evaluation of the sum $A(2 m)$. Note that we have not evaluated $S_{1}(2 m+1)$.
3. For completeness we give a simple proof of (1.8), (2.6) and (2.7). We assume Saalschütz's theorem [2, p. 9] :

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-n)_{k}(a)_{k}(b)_{k}}{\left.k!(c)_{k}(d)\right)_{k}}=\frac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}} \tag{3.1}
\end{equation*}
$$

where

$$
(a)_{k}=a(a+1) \ldots(a+k-1), \quad(a)_{0}=1
$$

and
(3.2)

$$
c+d=-n+a+b+1
$$

We rewrite (3.1) in the following way:

$$
\begin{equation*}
\sum_{r=0}^{j} \frac{(-j)_{r}(a+j)_{r}(b+c-a+1)_{r}}{r!(b+1)_{r}(c+1)_{r}}=\frac{(a-b)_{j}(a-c)_{j}}{(b+1)_{j}(c+1)_{j}} \tag{3.3}
\end{equation*}
$$

the condition (3.2) is automatically satisfied. Multiplying both sides of (3.3) by (a) $)_{j} x^{j} / j!$ and summing over j, it follows that

$$
\begin{gathered}
\sum_{j=0}^{\infty} \frac{(a)_{j}(a-b)_{j}(a-c)_{j}}{j!(b+1)_{j}(c+1)_{j}} x^{j}=\sum_{j=0}^{\infty} \frac{(a)_{j}}{j!} x^{j} \sum_{r=0}^{\infty} \frac{(-j)_{r}(a+j)_{r}(b+c-a+1)_{r}}{r!(b+1)_{r}(c+1)_{r}} \\
=\sum_{r=0}^{\infty}(-1)^{r} \frac{(a)_{2 r}(b+c-a+1)_{r}}{r!(b+1)_{r}(c+1)_{r}} x^{r} \sum_{j=0}^{\infty} \frac{(a+2 r)_{j}}{j!} x^{j}=\sum_{r=0}^{\infty}(-1)^{r} \frac{(a)_{2 r}(b+c-a+1)_{r}}{r!(b+1)_{r}(c+1)_{r}} x^{r}(1-x)^{-a-2 r} .
\end{gathered}
$$

Now take $a=-n$ and we get

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{(-n)_{j}(-n-b)_{j}(-n-c)_{j}}{j!(b+1)_{j}(c+1)_{j}} x^{j}=\sum_{r=0}^{\infty}(-1)^{r} \frac{(-n)_{2 r}(b+c+n-1)_{r}}{r!(b+1)_{r}(c+1)_{r}} x^{r}(1-x)^{n-2 r} \tag{3.4}
\end{equation*}
$$

For $n=2 m$ and $x=1,(3.4)$ reduces to

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{(-2 m)_{j}(-2 m-b)_{j}(-2 m-c)_{j}}{j!(b+1)_{j}(c+1)_{j}}=(-1)^{m} \frac{(2 m)!(b+c+2 m+1)_{m}}{m!(b+1)_{m}(c+1)_{m}} \tag{3.5}
\end{equation*}
$$

Now let b, c be non-negative integers. Then (3.5) yields

$$
\begin{align*}
& \sum_{j=0}^{2 m}(-1)^{m}\binom{2 m}{j}\binom{2 m+b+c}{j+b}\binom{2 m+b+c}{j+c} \tag{3.6}\\
&=(-1)^{m} \frac{(2 m)!(3 m+b+c)!(2 m+b+c)!}{m!(m+b)(m+c)!(2 m+b)!(2 m+c)!}
\end{align*}
$$

For $b=c=0$ we get (1.8); for $b=0, c=1$ we get (2.6); for $b=c=1$ we get (2.7).

REFERENCES

1. E 2395, Amer. Math. Monthly, 80 (1973), p. 75; solution, 80 (1973), p. 1146.
2. W. N. Bailey, Generalized Hypergeometric Series, Cambridge, 1935.
3. L. J. Slater, Generalized Hypergeometric Functions, Cambridge, 1966.

*

[Continued from Page 214.]

$$
\frac{1}{k} \log \frac{1+\sqrt{5}}{2}
$$

as $n \rightarrow \infty$. Since this limiting value is an irrational number, the sequence $\left(u_{n}\right)$ is u.d. $\bmod 1$.
REMARK. Let p and q be non-negative integers. Then the sequence

$$
p, \quad q, \quad p+q, \quad p+2 q, \quad 2 p+3 q
$$

or $\left(H_{n}\right), n=1,2, \cdots$ with

$$
H_{n}=q F_{n-1}+p F_{n-2} \quad(n \geqslant 3), \quad H_{1}=p, \quad H_{2}=q
$$

possesses the property shown in Theorem 1. For if $v_{n}=\log H_{n}^{1 / k}$, we have

$$
v_{n+1}-v_{n} \rightarrow \frac{1}{k} \log \frac{1+\sqrt{5}}{2}
$$

as $n \rightarrow \infty$.
Theorem 2. Let p, q, p^{*} and q^{*} be non-negative integers. Let $\left(H_{n}\right)$ be the sequence

$$
p, \quad q, \quad p+q, \quad p+2 q, \quad 2 p+3 q, \quad \cdots
$$

and $\left(H_{n}^{*}\right)$ the sequence

$$
p^{*}, q^{*}, p^{*}+q^{*}, p^{*}+2 q^{*}, 2 p^{*}+3 q^{*}, \cdots .
$$

