RESTRICTED COMPOSITIONS

L. CARLITZ
Duke University, Durham, North Carolina 27706

1. INTRODUCTION

A composition of the integer n into k parts is defined [1, p. 107] as the number of ordered sets of non-negative integers $\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ such that (1.1) $\quad a_{1}+a_{2}+\cdots+a_{k}=n$.

It is well known and easy to prove that the number of such compositions is equal to the binomial coefficient

$$
\binom{n+k-1}{k-1}
$$

If we require that the a_{i} be strictly positive then of course the number of solutions of (1.1) is equal to

$$
\binom{n-1}{k-1}
$$

In the present paper we consider the problem of determining the number of solutions of (1.1) when we require that
(1.2)
$a_{i} \neq a_{i+1}$
($i=1,2, \cdots, k-1$).

Let $c(n, k)$ denote the number of solutions of (1.1) and (1.2) in positive a_{j} and let $\bar{c}(n, k)$ denote the number of solutions of (1.1) and (1.2) in non-negative a_{j}. Then clearly

$$
\begin{equation*}
c(n, k)=\bar{c}(n-k, k) . \tag{1.3}
\end{equation*}
$$

Also it is evident from the definition that

$$
\begin{equation*}
\bar{c}(n, k)=0 \quad(k>2 n+1) \tag{1.4}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\sum_{n, k=0}^{\infty} c(n, k) x^{n} z^{k}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}} \tag{1.5}
\end{equation*}
$$

For $z=1$, this reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(n) x^{n}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j}}{1-x^{j}}} \tag{1.6}
\end{equation*}
$$

where

Supported in part by NSF grant GP-3724X1.

$$
\begin{equation*}
c(n)=\sum_{k=1}^{n} c(n, k), \quad c(0)=1 \tag{1.7}
\end{equation*}
$$

Thus $c(n)$ is the number of solutions of (1.1) and (1.2) with $a_{i}>0$ when the number of parts is unrestricted.
It follows from (1.3) and (1.6) that

$$
\begin{equation*}
1+\sum_{n, k=1}^{\infty} \bar{c}(n, k) x_{z}^{n} k=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}} \tag{1.8}
\end{equation*}
$$

This is also proved independently.
The generating function for

$$
\begin{equation*}
\bar{c}(n)=\sum_{k} \bar{c}(n, k), \quad \bar{c}(0)=1 \tag{1.9}
\end{equation*}
$$

is less immediate. It is proved that

$$
\begin{equation*}
\sum_{0}^{\infty} \bar{c}(n) x^{n}=\frac{1}{1-(1-x) \sum_{1}^{\infty} \frac{x^{2 j-1}}{\left(1-x^{2 j-1}\right)\left(1-x^{2 j}\right)}} \tag{1.10}
\end{equation*}
$$

It is of some interest to determine the radius of convergence of the series

$$
\begin{equation*}
\sum_{0}^{\infty} c(n) x^{n}, \quad \sum_{0}^{\infty} \bar{c}(n) x^{n} \tag{1.11}
\end{equation*}
$$

We show that the radius of convergence of the first is at least $1 / 2$; the radius of convergence of the second is also probably $>1 / 2$ but this is not proved.

2. GENERATING FUNCTIONS FOR $c(n, k)$ AND $c_{a}(n ; k)$

It is convenient to define the following refinements of $c(n, k)$ and $\bar{c}(n, k)$. Let $c_{a}(n, k)$ denote the number of solutions of (1.1) and (1.2) in positive integers a_{j} with $a_{i}=a_{i} ; \bar{c}_{a}(n, k)$ is defined as the corresponding number when the a_{i} $\geqslant 0$. Clearly

$$
\begin{equation*}
c(n, k)=\sum_{a=1}^{n} c_{a}(n, k), \quad \bar{c}(n, k)=\sum_{a=0}^{n} \bar{c}_{a}(n, k) . \tag{2.1}
\end{equation*}
$$

The enumerant $c_{a}(n, k)$ satisfies the recurrence

$$
\begin{equation*}
c_{a}(n, k)=\sum_{b \neq a} c_{b}(n-a, k-1) \quad(k>1) \tag{2.2}
\end{equation*}
$$

If we put, for $k \geqslant 1$,

$$
F_{a}(x, k)=\sum_{n=1}^{\infty} c_{a}(n, k) x^{n}, \quad \Phi_{k}(x, y)=\sum_{a=1}^{\infty} F_{a}(x, k) y^{a}
$$

it follows from (2.2) that

$$
F_{a}(x, k)=x^{a} \sum_{b \neq a} F_{b}(x, k-1) \quad(k>1)
$$

Then
$\Phi_{k}(x, y)=\sum_{a=1}^{\infty}(x y)^{a} \sum_{b \neq a} F_{b}(x, k-1)=\sum_{b=1}^{\infty} F_{b}(x, k-1) \sum_{a \neq b}(x y)^{a}=\sum_{b=1}^{\infty} F_{b}(x, k-1)\left(\frac{x y}{1-x y}-(x y)^{b}\right)$,
so that

$$
\begin{equation*}
\Phi_{k}(x, y)=\frac{x y}{1-x y} \Phi_{k-1}(x, 1)-\Phi_{k-1}(x, x y) \quad(k>1) . \tag{2.3}
\end{equation*}
$$

Iterating (2.3), we get
$\Phi_{k}(x, y)=\frac{x y}{1-x y} \Phi_{k-1}(x, 1)-\frac{x^{2} y}{1-x^{2} y} \Phi_{k-2}(x, 1)+\Phi_{k-2}\left(x, x^{2} y\right) \quad(k>2)$
and generally

$$
\Phi_{k}(x, y)=\sum_{j=1}^{s}(-1)^{j-1} \frac{x^{j} y}{1-x^{j} y} \Phi_{k-j}(x, 1)+(-1)^{s} \Phi_{k-s}\left(x, x^{s} y\right) \quad(k>s)
$$

In particular, for $s=k-1$, this becomes

$$
\begin{equation*}
\Phi_{k}(x, y)=\sum_{j=1}^{k-1}(-1)^{j-1} \frac{x^{j} y}{1-x^{j} y} \Phi_{k-j}(x, 1)+(-1)^{k-1} \Phi_{1}\left(x, x^{k-1}, y\right) \quad(k>1) \tag{2.4}
\end{equation*}
$$

Since

$$
\Phi_{1}(x, y)=\sum_{a=1}^{\infty}(x y)^{a}=\frac{x y}{1-x y},
$$

it is clear that (2.4) may be replaced by

$$
\begin{equation*}
\Phi_{k}(x, y)=\sum_{j=1}^{k}(-1)^{j-1} \frac{x^{j} y}{1-x^{j} y} F_{k-1}(x, 1) \quad(k \geqslant 1) \tag{2.5}
\end{equation*}
$$

where it is understood that

$$
\begin{equation*}
\Phi_{0}(x, y)=1 \tag{2.6}
\end{equation*}
$$

For $y=1$, (2.5) reduces to

$$
\begin{equation*}
\Phi_{k}(x, 1)+\sum_{j=1}^{k}(-1)^{j} \frac{x^{j}}{1-x^{j}} \Phi_{k-j}(x, 1)=\delta_{k .1} \tag{2.7}
\end{equation*}
$$

where $\delta_{k, 1}$ is the Kronecker delta.
Using (2.6), this gives

$$
\sum_{k=0}^{\infty} z^{k}\left\{\Phi_{k}(x, 1)+\sum_{j=1}^{k}(-1)^{j} \frac{x^{j}}{1-x^{j}} \Phi_{k-j}(x, 1)\right\}=1
$$

and therefore
(2.8)

$$
\sum_{k=0}^{\infty} \Phi_{k}(x, 1) z^{k}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}}
$$

In view of (2.1), (2.8) can be written in the more explicit form
(2.9)

$$
\sum_{n, k=0}^{\infty} c(n, k) x^{n} z^{k}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}}
$$

We now put
(2.10)

$$
\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}}=\sum_{k=0}^{\infty} \frac{p_{k}(x)}{(x)_{k}} z^{k}
$$

where

$$
(x)_{k}=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right), \quad(x)_{0}=1
$$

Clearly
(2.11)

$$
\Phi_{k}(x, 1)=\frac{P_{k}(x)}{(x)_{k}}
$$

The $P_{k}(x)$ are polynomials in x that satisfy
(2.12)

$$
P_{k}(x)=\sum_{j=1}^{k}(-1)^{j-1}\left[\begin{array}{c}
k \\
j
\end{array}\right](x)_{j-1} x^{j} P_{k-j}(x) \quad(k \geqslant 1)
$$

where

$$
\left[\begin{array}{c}
k \\
i
\end{array}\right]=\frac{(x)_{k}}{(x)_{j}(x)_{k-j}}
$$

The first few values of $P_{k}(x)$ are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=2 x^{3}, \quad P_{3}(x)=x^{4}+x^{5}+4 x^{6} .
$$

In the next place, by (2.5),

$$
\sum_{k=1}^{\infty} \Phi_{k}(x, y) z^{k}=\sum_{k=1}^{\infty} z^{k} \sum_{j=1}^{k}(-1)^{j-1} \frac{x^{j} y}{1-x^{j} y} \Phi_{k-j}(x, 1)=\sum_{j=1}^{\infty}(-1)^{j-1} \frac{x^{j} y z^{j}}{1-x^{j} y} \sum_{k=0}^{\infty} \Phi_{k}(x .1) z^{k}
$$

Hence, by (2.8),

$$
\begin{equation*}
\sum_{k=1}^{\infty} \Phi_{k}(x, y) z^{k}=\frac{\sum_{j=1}^{\infty}(-1)^{j-1} \frac{x^{j} y z^{j}}{1-x^{j} y}}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}} \tag{2.13}
\end{equation*}
$$

This evidently reduces to (2.8) when $y=1$.
Note that the LHS of (2.13) is equal to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{a, k} c_{a}(n, k) x^{n} y^{a_{z}} k \tag{2.14}
\end{equation*}
$$

3. GENERATING FUNCTION FOR $c(n)$ AND RELATED FUNCTIONS

For $z=1$, (2.8) reduces to
(3.1)

We have

$$
\sum_{k=0}^{\infty} \Phi_{k}(x, 1)=\frac{1}{1-\sum_{j=1}^{\infty}(-1)^{j-1} \frac{x^{j}}{1-x^{j}}}
$$

$$
\sum_{i=1}^{\infty}(-1)^{j-1} \frac{x^{j}}{1-x^{j}}=\sum_{j, k=1}^{\infty}(-1)^{j-1} x^{j k}=\sum_{n=1}^{\infty} x^{n} \sum_{j \mid n}(-1)^{j-1}
$$

Put

$$
\begin{equation*}
d^{\prime}(n)=\sum_{j \mid n}(-1)^{j-1} \tag{3.2}
\end{equation*}
$$

thus $d^{\prime}(n)$ is the number of odd divisors of n less the number of even divisors.
For $n=2^{r} m$, where m is odd, and $r \geqslant 0$,

$$
d^{\prime}(n)=\sum_{s=0}^{r} \sum_{i \mid m}(-1)^{2^{s} j-1}=(1-r) \sum_{j \mid m} 1
$$

so that
(3.3)

$$
d^{\prime}(n)=-(r-1) d(m)
$$

where $d(n)$ is the number of divisors of n.
Thus we may replace (3.1) by

$$
\begin{equation*}
\sum_{k=0}^{\infty} \Phi_{k}(x, 1)=\frac{1}{1-\sum_{1}^{\infty} d^{\prime}(n) x^{n}} \tag{3.4}
\end{equation*}
$$

$$
\sum_{k=0}^{\infty} \Phi_{k}(x, 1)=1+\sum_{n, k, a=1}^{\infty} c_{a}(n, k) x^{n}=1+\sum_{n=1}^{\infty} c(n) x^{n}
$$

we have therefore

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} c(n) x^{n}=\frac{1}{1-\sum_{j=1}^{\infty}(-1)^{j-1} \frac{x^{j}}{1-x^{i}}}=\frac{1}{1-\sum_{n=1}^{\infty} d^{\prime}(n) x^{n}} \tag{3.5}
\end{equation*}
$$

It follows that $c(n)$ satisfies the recurrence

$$
\begin{equation*}
c(n)=\sum_{j=1}^{n} d^{\prime}(j) c(n-j) \quad(n \geqslant 1) \tag{3.6}
\end{equation*}
$$

where $c(0)=1$.
It is also of some interest to take $z=-1$ in (2.8). We get

$$
\sum_{k=0}^{\infty}(-1)^{k} \Phi_{k}(x, 1)=\frac{1}{1+\sum_{1}^{\infty} \frac{x^{j}}{1-x^{j}}}=\frac{1}{1+\sum_{1}^{\infty} d(n) x^{n}}
$$

Since

$$
\sum_{k=0}^{\infty}(-1)^{k} \Phi_{k}(x, 1)=1+\sum_{n, k, a=1}^{\infty}(-1)^{k} c_{a}(n, k) x^{n}=1+\sum_{n=1}^{\infty} c^{*}(n) x^{n}
$$

where
(3.7)

$$
c^{*}(n)=\sum_{k, a=1}^{n}(-1)^{k} c_{a}(n, k)
$$

we get
(3.8)

$$
1+\sum_{1}^{\infty} c^{*}(n) x^{n}=\frac{1}{1+\sum_{1}^{\infty} d(n) x^{n}}
$$

This yields the recurrence

$$
\begin{equation*}
c^{*}(n)+\sum_{j=1}^{n} d(j) c *(n-j)=0 \quad(n \geqslant 1) \tag{3.9}
\end{equation*}
$$

where $c *(0)=1$.
The first few values of $c^{*}(n)$ are

$$
c^{*}(1)=-1, \quad c^{*}(2)=-1, \quad c^{*}(3)=1, \quad c^{*}(4)=0, \quad c^{*}(5)=1, \quad c^{*}(6)=-2 .
$$

It is also of interest to take $y=-1$ in (2.13). For $y=-1, z=1$ we get

$$
\sum_{k=1}^{\infty} \Phi_{k}(x,-1)=\frac{\sum_{1}^{\infty}(-1)^{j} \frac{x^{j}}{1+x^{j}}}{1+\sum_{1}^{\infty}(-1)^{j} \frac{x^{j}}{1-x^{j}}}
$$

so that
(3.10)

$$
\sum_{k=0}^{\infty} \Phi_{k}(x,-1)=\frac{1+2 \sum_{1}^{\infty}(-1)^{j} \frac{x^{j}}{1-x^{2 j}}}{1+\sum_{1}^{\infty}(-1)^{j} \frac{x^{j}}{1-x^{j}}}
$$

If we take $y=z=-1$ in (2.13) we get

$$
\sum_{k=1}^{\infty}(-1)^{k} \Phi_{k}(x,-1)=\frac{\sum_{1}^{\infty} \frac{x^{j}}{1+x^{j}}}{1+\sum_{1}^{\infty} \frac{x^{j}}{1-x^{j}}}
$$

so that
(3.11)

$$
\sum_{k=0}^{\infty}(-1)^{k} \Phi_{k}(x,-1)=\frac{1+2 \sum_{1}^{\infty} \frac{x^{j}}{1-x^{2 j}}}{1+\sum_{1}^{\infty} \frac{x^{j}}{1-x^{j}}}=\frac{1+2 \sum_{1}^{\infty} d_{0}(n) x^{n}}{1+\sum_{1}^{\infty} d(n) x^{n}}
$$

where $d_{o}(n)$ denotes the number of odd divisors of n. Note that the LHS of (3.11) is equal to

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} x^{n} \sum_{a, k}(-1)^{a+k} c_{a}(n, k) \tag{3.12}
\end{equation*}
$$

4. GENERATING FUNCTION FOR $\bar{c}(n, k)$ AND $\bar{c}_{a}(n, k)$

While generating functions for $\bar{c}(n, k)$ and $\bar{c}_{a}(n, k)$ can be obtained from those for $c(n, k)$ and $c_{a}(n, k)$ by using (1.3), it is of some interest to derive them independently. Put

$$
\bar{F}_{a}(x, k)=\sum_{n=0}^{\infty} \bar{c}_{a}(n, k) x^{n}, \quad \bar{\Phi}_{k}(x, y)=\sum_{a=0}^{\infty} \bar{F}_{a}(x, k) y^{a}
$$

Then, exactly as in Section 2,

$$
\bar{c}_{a}(n, k)=\sum_{b \neq a} c_{b}(n-a, k),
$$

so that

$$
\bar{F}_{a}(n, k)=x^{a} \sum_{b \neq a} \bar{F}_{b}(x, k-1)
$$

and

$$
\bar{\Phi}_{k}(x, y)=\sum_{a=0}^{\infty}(x y)^{a} \sum_{b \neq a} \bar{F}_{b}(x, k-1)=\sum_{b=0}^{\infty} \bar{F}_{b}(x, k-1)\left(\frac{1}{1-x y}-(x y)^{b}\right)
$$

Thus
(4.1)

$$
\bar{\Phi}_{k}(x, y)=\frac{1}{1-x y} \Phi_{k-1}(x, 1)-\bar{\Phi}_{k-1}(x, x y) \quad(k>1) .
$$

As above, iteration yields

$$
\bar{\Phi}_{k}(x, y)=\sum_{j=1}^{k-1} \frac{(-1)^{j-1}}{1-x^{j} y} \bar{\Phi}_{k-j}(x, 1)+(-1)^{k-1} \bar{\Phi}_{1}\left(x, x^{k-1} y\right) \quad(k>1)
$$

Since

$$
\bar{\Phi}_{1}(x, y)=\sum_{a=0}^{\infty}(x y)^{a}=\frac{1}{1-x y}
$$

we get
(4.2)

$$
\bar{\Phi}_{k}(x, y)=\sum_{j=1}^{k} \frac{(-1)^{j-1}}{1-x^{j} y} \bar{\Phi}_{k-j}(x, 1) \quad(k \geqslant 1)
$$

where
(4.3)

$$
\overline{\Phi_{0}}(x, y)=1
$$

For $y=1$, (4.2) reduces to

$$
\begin{equation*}
\bar{\Phi}_{k}(x, 1)+\sum_{j=1}^{k} \frac{(-1)^{j}}{1-x^{j}} \bar{\Phi}_{k-j}(x, 1)=\delta_{k, 0} \tag{4.4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \bar{\Phi}_{k}(x, 1) z^{k}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}} \tag{4.5}
\end{equation*}
$$

Now put

$$
\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}}=\sum_{k=0}^{\infty} \frac{\bar{P}_{k}(x)}{(x)_{k}} z^{k}
$$

so that
(4.6)

$$
\bar{\Phi}_{k}(x, 1)=\frac{\bar{p}_{k}(x)}{(x)_{k}}
$$

The $\bar{P}_{k}(x)$ are polynomials in x that satisfy the recurrence

$$
\bar{P}_{k}(x)=\sum_{j=1}^{k}(-1)^{j-1}\left[\begin{array}{l}
k \tag{4.7}\\
j
\end{array}\right](x)_{j-1} \bar{P}_{k-j}(x) \quad(k \geqslant 1)_{i}
$$

also it is clear from the definition that
(4.8)

$$
P_{k}(x)=x^{k} \bar{P}_{k}(x)
$$

For $x=1$, (4.7) reduces to

$$
\bar{P}_{k}(1)=k \bar{P}_{k-1}(1),
$$

so that
(4.9)

$$
\bar{P}_{k}(1)=k!.
$$

Also it is easy to show by induction that

$$
\operatorname{deg} \bar{P}_{j}(x) \leqslant 1 / 2 j(j-1)
$$

Indeed, assuming that this holds for $j<k$, it follows that the degree of the $j{ }^{t h}$ term on the right of (4.7)

$$
\leqslant j(k-j)+1 / 2 j(j-1)+1 / 2(k-j)(k-j-1)=1 / 2 k(k-1) .
$$

Let γ_{k} denote the coefficient of $x^{1 / 2 k(k-1)}$ in $\bar{P}_{k}(x)$. Then we have

$$
\gamma_{k}=\sum_{j=1}^{k} \gamma_{k-j}=\sum_{j=0}^{k-1} \gamma_{j} \quad(k \geqslant 1)
$$

This gives

$$
\sum_{k=0}^{\infty} \gamma_{k} x^{k}\left(1-\sum_{j=1}^{\infty} x^{i}\right)=1
$$

so that

$$
\sum_{k=0}^{\infty} \gamma_{k} x^{k}=\frac{1-x}{1-2 x}
$$

Thus $\gamma_{k}=2^{k-1}, k \geqslant 1$, and so

$$
\begin{equation*}
\operatorname{deg} \bar{P}_{k}(x)=1 / 2 k(k-1) \tag{4.10}
\end{equation*}
$$

Since, by (2.4),

$$
\bar{c}(n, k)=0 \quad(k>2 n+1),
$$

it follows that $\bar{P}_{k}(x)$ begins with a term in $x^{[k / 2]}$; moreover the coefficient of this term is 1 for k odd and 2 for k even and positive.

It is clear from the recurrence (4.7) that all the coefficients are integers. It would be interesting to know if they are positive.
If we put

$$
\bar{P}_{k}(x)=\sum_{j} \gamma(k, j) x^{j} \quad \text { and } \quad \frac{1}{(x)_{k}}=\sum_{n=0}^{\infty} p(n, k) x^{n}
$$

so that $p(n, k)$ is the number of partitions (in the usual sense) of n into parts $\leqslant k$, it follows from (4.6) that

$$
\begin{equation*}
\bar{c}(n, k)=\sum_{j} p(n-j, k) \gamma(k, j) . \tag{4.11}
\end{equation*}
$$

Returning to (4.2), we have

$$
\sum_{k=1}^{\infty} \bar{\Phi}_{k}(x, y) z^{k}=\sum_{j=1}^{\infty}(-1)^{j-1} \frac{z^{j}}{1-x^{j} y} \sum_{k=0}^{\infty} \bar{\Phi}_{k}(x, 1) z^{k}
$$

This gives

$$
\begin{equation*}
\sum_{k=1}^{\infty} \bar{\Phi}_{k}(x, y) z^{k}=\frac{\sum_{j=1}^{\infty}(-1)^{j-1} \frac{z^{j}}{1-x^{j} y}}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}} \tag{4.12}
\end{equation*}
$$

We may rewrite (4.5) and (4.12) as

$$
\begin{align*}
1+\sum_{n, k=1}^{\infty} \bar{c}(n, k) x^{n} z^{k}= & \frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}}, \tag{4.13}\\
1+\sum_{n=1}^{\infty} \sum_{a, k} \bar{c}_{a}(n, k) x^{n} y^{a_{z}} k & =\frac{\sum_{j=1}^{\infty}(-1)^{j-1} \frac{z^{j}}{1-x^{j} y}}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{z^{j}}{1-x^{j}}} . \tag{4.14}
\end{align*}
$$

By (1.3) we have
(4.15)

$$
\bar{c}(n, k)=c(n+k, k) .
$$

Hence, replacing z by $x z$ in (4.5), we have

$$
\begin{equation*}
1+\sum_{n, k=1}^{\infty} c(n+k, k) x^{n+k_{z} k}=\frac{1}{1+\sum_{j=1}^{\infty}(-1)^{j} \frac{x^{j} z^{j}}{1-x^{j}}} \tag{4.16}
\end{equation*}
$$

This is of course equivalent to (2.9).
Since

$$
\bar{c}_{a}(n, k)=c_{a+1}(n+k, k) \quad(k>0),
$$

the equivalence of (4.16) and (2.9) follows easily.
Note that it follows from (4.6) and (4.12) that

$$
\begin{equation*}
\bar{\Phi}_{k}(x, y)=\sum_{j=1}^{k} \frac{(-1)^{j-1}}{1-x^{j} y} \frac{\bar{P}_{k-j}(x)}{(x)_{k-j}} \tag{4.17}
\end{equation*}
$$

In addition to (4.15) another relation expressing $\bar{c}(n, k)$ in terms of $c(n, k)$ can be obtained by considering the possible location of zero elements. There may be a zero on the extreme left or the extreme right; also there may be one or more zeros on the inside. Thus we get relations such as the following.

$$
\begin{gathered}
\bar{c}(0,0)=\bar{c}(0,1)=1, \quad \bar{c}(n, 1)=c(n, 1)=1 \quad(n \geqslant 1), \\
\bar{c}(n, 2)=c(n, 2)+2 c(n, 1) \quad(n \geqslant 2), \\
\bar{c}(n, 3)=c(n, 3)+2 c(n, 2)+x(n, 1)+\sum_{n_{1}+n_{2}=n} c\left(n_{1}, 1\right) c\left(n_{2}, 1\right), \\
\bar{c}(n, 4)=c(n, 4)+2 c(n, 3)+c(n, 2)+2 \sum_{n_{1}+n_{2}=n} c\left(n_{1}, 1\right) c\left(n_{2}, 1\right)+2 \sum_{n_{1}+n_{2}=n} c\left(n_{1}, 1\right) c\left(n_{2}, 2\right) .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
\sum_{0}^{\infty} \Phi_{k}(x, 1) z^{k}=1+z+(1+z)^{2} \sum_{1}^{\infty} \Phi_{k}(x, 1) z^{k}+(1+z)^{2} z\left\{\sum_{1}^{\infty} \Phi_{k}(x, 1) z^{k}\right\}^{2}+(1+z)^{3} z\left\{\sum_{1}^{\infty} \Phi_{k}(x, 1) z^{k}\right\}^{3}+\cdots \\
=1+z+\frac{(1+z)^{2} \sum_{1}^{\infty} \Phi_{k}(x, 1) z^{k}}{1-z \sum_{1}^{\infty} \Phi_{k}(x, 1) z^{k}}
\end{gathered}
$$

It is easily verified that this is in agreement with (2.8) and (4.5).

5. GENERATING FUNCTIONS FOR $c(n)$ AND $\bar{c}(n)$

We may not put $z=1 \mathrm{in}(4.5)$ since the right-hand side then becomes meaningless. We can get around this difficulty in the following way.
To begin with, we shall get crude upper bounds for $c(n)$ and $\bar{c}(n)$. Let $\nu(n, k)$ denote the number of solutions in positive integers of

$$
n=a_{1}+a_{2}+\ldots+a_{k}
$$

and let $\bar{\nu}(n, k)$ denote the number of solutions in non-negative integers. Then

$$
v(n, k)=\binom{n-1}{k-1}, \quad \bar{\nu}(n, k)=\binom{n+k-1}{k-1} .
$$

$$
c(n, k) \leqslant \nu(n, k), \quad \bar{c}(n, k) \leqslant \bar{\nu}(n, k) .
$$

It follows that
(5.1)

$$
c(n) \leqslant 2^{n-1} \quad(n \geqslant 1)
$$

so that the radius of convergence of

$$
\begin{equation*}
\sum_{0}^{\infty} c(n) x^{n} \tag{5.2}
\end{equation*}
$$

is at least $1 / 2$.
As for $\bar{c}(n)$, since

$$
\bar{c}(n, k)=0 \quad(k>2 n+1)
$$

we get

$$
\bar{c}(n) \leqslant \sum_{k=1}^{2 n+1}\binom{n+k-1}{k-1}=\sum_{k=0}^{2 n}\binom{n+k}{k} \leqslant \sum_{k=0}^{2 n}\binom{3 n}{k}
$$

so that
(5.3)

$$
\bar{c}(n) \leqslant 2^{3 n} .
$$

Hence the radius of convergence of

$$
\begin{equation*}
\sum_{0}^{\infty} \bar{c}(n) x^{n} \tag{5.4}
\end{equation*}
$$

is at least $1 / 8$;
Presumably these bounds are by no means best possible. It seems likely that the radius of convergence of (5.4) is about $1 / 2$.
Next consider

$$
\sum_{j=1}^{2 k}(-1)^{j-1} \frac{z^{j}}{1-x^{j}}=\sum_{j=1}^{k}\left(\frac{z^{2 j-1}}{1-x^{2 j-1}}-\frac{z^{2 j}}{1-x^{2 j}}\right)=\sum_{j=1}^{\infty} \frac{1-z+x^{2 j-1}(z-x)}{\left(1-x^{2 j-1}\right)\left(1-x^{2 j}\right)} z^{2 j-1}
$$

Thus (4.5) becomes

$$
\begin{equation*}
\sum_{0}^{\infty} \Phi_{k}(x, 1) z^{k}=\frac{1}{1-\sum_{1}^{\infty} \frac{1-z+x^{2 j-1}(z-x)}{\left(1-x^{2 j-1}\right)\left(1-x^{2 j}\right)}} \tag{5.5}
\end{equation*}
$$

It is now permissible to let $z \rightarrow 1$. We get

$$
\begin{equation*}
\sum_{0}^{\infty} \bar{c}(n) x^{n}=\frac{1}{1-(1-x) \sum_{1}^{\infty} \frac{x^{2 j-1}}{\left(1-x^{2 j-1}\right)\left(1-x^{2 j}\right)}} \tag{5.6}
\end{equation*}
$$

For $x=1 / 2$ we get

$$
\frac{1 / 2}{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)}+\frac{1 / 8}{\left(1-\frac{1}{8}\right)\left(1-\frac{1}{16}\right)}+\frac{1 / 32}{\left(1-\frac{1}{32}\right)\left(1-\frac{1}{64}\right)}=\frac{4}{3}+\frac{16}{105}+\frac{32}{31.63}<1
$$

Thus the radius of convergence of (5.4) is probably somewhat greater than $1 / 2$.

REFERENCE

1. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
