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ABSTRACT 

A generalization of the Fibonacci numbers arises in the theory of dynamic storage allocation schema. The associated 
linear recurrence relation involves the polynomial Zk - Zk~1 - 1, k > 1. A theorem is proven showing that all the 
zeroes of this polynomial lie in the intersection of two annuli. 

Complete information about the sequence then follows, e.g., expressing the elements in terms of certain sums of bi-
nomial coefficients and sums of powers of roots, limits of quotients of terms, and limits of roots. Tables useful for 
storage design are included. 

A certain linear recurrence relation arises in the theory of memory allocation schema which generalizes the linear re-
currence defining the Fibonacci numbers. The generalized numbers may be expressed as the coefficients of a rational 
generating function where the denominator of the rational function involves the trinomial Zk -Z ~ - 1. From this 
fact follows two expressions for the numbers themselves, one in terms of linear combinations of the powers of the roots 
of the trinomial, and another expression giving the numbers as sums of binomial coefficients which lie on a line of 
rational slope falling across Pascal's triangle. The former expression gives complete information on the limit of succes-
sive quotients. This latter data depends upon the location of the roots of this trinomial: all complex zeroes lie in the 
intersection of two annuli in the complex plane. See Table 1 and Figure 1 for explicit numbers and visulization of the 
following central theorems. 

Theorem A. Let k > 1. All of the k zeroes of Z - Z "f - 1 are distinct and lie in the intersection of the two 
annuli 

X0 < \Z\ < \ t and Xx - 7 < \Z- 1 | < / + X0 , 

where Xe= \e(k) is the largest (positive) real solution of 

rk + (-1)erk'1 - 1 = 0, e= 0,1, 0 < \ < 1 < \ < 2. 

Table 2 gives approximate values of these \ e = \e(k), k= 1,2, —, 20, 100. 

Theorem B. Let k > 1. Define fkff1 = fken, / + fk,n-k / fkj = 0,j < k; f^ = 1. Then 

lim thpt!' = \(k) and lim XJk) = 1. 

The proofs of these theorems depend upon two sequences of lemmas, those bearing more directly upon Theorem A 
or B; we number the lemmas accordingly. 

Lemma Al. let p(Z) = Zk - Zk~1 - 1,k>\. None of the zeroes of p(Z) are rational; all of the zeroes of 
p(1)(Z) are rational. 

Proof. Since 

P
(1)(z) = kzk~2 (z-k-f±) 

233 
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Figure 1. The Two Annuli Theorem 
(The shaded region represents the region in which all of the complex zeroes of Zk - Zk~1 1 must lie.) 
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0 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

2048 

4096 

8192 

16384 

32768 
65536 

131072 

262144 

524288 

1048576 

2097152 

4194304 

8388608 

16777216 

33554432 

67108864 

134217728 

268435456 

536870912 

1073741824 

Table 1 

The Sequences f̂ /7 = h,r 
WithfkJ= 0,j <k; fkrk 

2 

0 
0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 
377 
610 
987 
1597 

2584 

4181 

6765 

10946 

17711 

28657 

46368 

75025 

121393 

196418 

317811 

514299 

832040 

3 

0 

0 
0 
1 
1 
1 
2 
3 
4 
6 
9 
13 
19 
28 
41 
60 
88 
129 
189 
277 
406 
595 
872 
1278 

1873 

2745 

4023 

5896 

8641 
12664 

18560 

27201 

4 

0 
0 
0 
0 
1 
1 
1 
1 
2 
3 
4 
5 
7 
10 
14 
19 
26 
36 
50 
69 
95 
131 
181 
250 
345 
476 
657 
907 
1252 

1728 

2385 

3292 

5 

0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
8 
11 
15 
20 
26 
34 
45 
60 
80 
106 
140 
185 
245 
325 
431 
571 
756 

= 1,k 

6 

0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
9 
12 
16 
21 
27 
34 
43 
55 
71 
92 
119 
153 
196 
251 

n-k 
> 1 

1 

0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
10 
13 
17 
22 
28 
35 
43 
53 
66 
83 
105 

8 

0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
11 
14 
18 
23 
29 
36 
44 
53 

9 

0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
12 
15 
19 
24 
30 

10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
13 
16 

11 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
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Table 2 
\€ = \€(k), e = 0,1 is the Largest Positive Real Root of rk + (-l)erk~1 - I 

The roots are truncated to 25 decimal places; see [3]. 

k 

~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
100 

\(k) 

2.0000000000000000000000000 
1.618033988749894B482045868 
1.4655712318767680266567312 
1.3802775690976141156733016 
1.3247179572447460259609088 
1.2851990332453493679072604 
1.255422871076846543 2050014 
1.2320546314285722959319676 
1.2131497230596399145540815 
1.1974914335516807746915412 
1.1842763223508938723515139 
1.1729507500239802071448788 
1.1631197906692044180088153 
1.1544935507090564328867379 
1.1468540421995067272864110 
1.1400339374770049101652704 
1.1339024903348373489121350 
1.1283559396916029856471042 
1.1233108062463267587889592 
1.1186991080522260494554442 
1.034 

\(k) 

0.0000000000 ~ 
0.6180339887498948482045868 
0.7548776662466927600495088 
0.8191725133961644396995711 
0.8566748838545028748523248 
0.8812714616335695944076491 
0.8986537126286992932608757 
0.9115923534820549186286736 
0.9215993196339830062994303 
0.9295701282320228642044130 
0.9360691110777583783971914 
0.9414696173216352043780467 
0.9460285282856136156355381 
0.9499283999636198830314051 
0.9533025374016641591079826 
0.9562505576379890668254960 
0.9588484010075613716652026 
0.9611549719964985735216646 
0.9632166633389015467989664 
0.9650705109167162350928078 
0.9930 

Figure 2. Combined graph of xk - xk~1- 1 = y for k even and odd. There is a local minimum atx = 



1976] USEFUL IN MEMORY ALLOCATION SCHEMA 237 

we see that the roots of piJ(Z) are 0 with multiplicity k-2and (k - l)/k\N\\\\ multiplicity 1, both rational. Since 
p(Z) is rnonic with integer coefficients any rational root must be agaussian integer. From the relation Zk'Uz - 1)= 1 
it is easy to infer that Z cannot be integral. 

Corollary Al. Define the collection of zeroes of p(Z) to be 

Then [Z^] = k, i.e., the roots are distinct, and we can order them 

\KA < l**,/+/|' / = 1,2,-,k-1 
with equality iff \/<j is the complex conjugate of \k,j+i • 

Proof. From Lemma A1 we have proven that p(Z) and p (Z) are relatively prime (C is algebraically closed) 
which is sufficient for the roots to be distinct. We note that in addition to nonreal complex zeroes occurring in con-
jugate pairs, exactly two roots are real if k is even and exactly one is real if k is odd. 

Lemma A2. There exist numbers, 0 < X0 < 1 < X, < 2 dependent only upon k, k > 1, such that all of the 
zeroes of p(Z) -Z - Z ~1 - 1 lie in an annulusX0 < \Z\ <XX centered atO and in an annulusXi - 1 <\Z- 1| < 
1 + X0 centered at 1. 

Proof. Since p(Q) $ 0, any complex zero Z of p(Z) has norm |Z| = r > 0 andp(Z) = 0 gives \Z- 1\ = r1~k\ Thus 
any zero lies on the intersection of the two circles |Z| = rand \Z - 1\ = r1"k with fixed centers. There are two cases of 
empty intersection: one circle lying wholly inside the other. Comparing radii of these circles there will be a non-vacuous 
intersection i f r < 1+r1~k o r i f r < X j where \ is the largest positive root of p(Z). (!). The second case of \Z\=r ly-
ing inside \Z- / j - rr""^ yields 0 < rk + rk~1 - 1 orr> X0 where X0 is the largest positive root of q(Z) = Zk + Z ~1~-
1. Locating these roots gives the inequalities above and noting that \1~k = 1 + X0 Xf " * = \x - 1 bounds the radius 
1~k 

Corollary A2. S e t X ^ ^ ^ X / ^ ^ X y . Then Xj(k) is real and |X^/ | <\i(k) for 1 <j<k. 

FigureS. Combined Graph ofxk + xk~1- 1 = y for k Even and Odd. There is a local 
maximum and minimum a t * = (1 - k)/k. 
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Proof. Xt is, from the proof of Lemima A2 the largest possible real root oip(Z). Note that if k is even that - X 0 

is the smallest real root oip(Z). 

Lemma A3. Let 

be any (complex) linear combination of the nth powers of the zeroes ofp(Z). Then, for A = Yl \ci\ < k max \cl\ 
t<J<k ^'<k 

L erf} < A\1 . 
11<J<k I 

Proof. This follows directly from Corollary A2 and the usual absolute value inequalities. This Lemma gives infor-
mation on the rate of growth of the integers f^n. 

Lemma A4. forp^fx)=xk -xk'! - 7, 

1+ X) PjM*xk - *• 
1<J<k 

Proof The sum telescopes. The purpose of this simple Lemma is to motivate the next Lemma; the largest positive 
real zero of the sum is k . 

Lemma A 5. Let k > 3. Then \<\t(k)<k1/k. 
Proof §'mep(1) = -7 we need only show that p(k1/k)>Q. For k> 3 it is clear that 

1+mhj<lnl<-
But 

t __ _ _ 
2(k- 7) 2k ' 2k2 ' 2k3 "" ' " 2k ' 3kT ' 4k 

so that 

7 + ^7T~T =4r+ihr+-JrT+>~> 1+ 4r + T£T + -rrr + " = -klil ( 7 - 1~r 

Rewriting, we have 

exp is order preserving so that 

Then 

But this gives 

-kin I 1-T) < Ink. 

ln[k-fl) >lnk-1/k, 

1-l>k~1/k. 

><i-fc<'-
0 <k-k1-(lM-1 = p(k1/k). 

Lemma A6. Let* >2. Then£~///: < \<k) < 1. 
Proof For 

q(z) = xk+xk'1- 7, q(7) = 7 

it is sufficient to show that q(k~1/k) < 0. It is clear that k1/k < k - / for k an integer larger than two. But then / + 
k1/k <k gives 
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k k 

Lemma AT. . lim k1/k = I 

Proof. This follows from ^lim^ (lnk)/k = 0. 

The development concludes the proof of Theorem A and the second limit of Theorem B. We now proceed to the 
rationality of the generating function, the two closed form expressions for its coefficients and the limit of successive 
ratios. 

Lemma Bl. Let fk,n be defined as in Theorem B. For k>\, the generating function for fk/n, viz., 

(1) 

is a rational function of £ In fact, 

(2) 

GkM = Y*fk,nt" 
n>Q 

•Hi ft 1 - f 

Uk(V 

1-t-r 

(3) 
— i - \ k j t 

1<J<k 

where the Xkj are as in Corollary A1 and 

(4) AkJ = BkJ4j 
with 

(5) BkJ = k\kJ-lk-j) 
Proof. Given equations (2) and (3), we have 

<3'» 1 - E *u ^ 
]<j<k K'J 

From Lemma A1, and letting f-^X^.- we have 
k .._£ j~ 

.k-i 
(4') Akij 

which, with X^~* = Xkj - 1 yields (5). 
From the initial conditions, fk/J = 0, j<k, fkfk = 1 m hwe fk,k+j - I 0<j<k by referring to the relation 

(6) 'fk,n = fk,n-1 + fkji-k • 

Then 

(7) Gk(t)= 53 fnf + Y* fntn 

k<n<2k n>2k 

and 

(8) tGk(t)= £ f^it"+ J2 ^-1*" 
k<n<2k n>2k 

(9) tkGk(t) = 0+Y1 fn-ktn. 
n>2k 
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From the relation (6) we have the equation 

(10) tGkM- $^ fn-itn + t*6k(t)°GkM- E fnt"' 
k<n<2k k<n<2k 

Isolating Gk(t) and noting that 

«D '*" E fn*n~ E W 
k<n<2k k<n<2k 

we have 

•A-
(12) Gk(t) = - 1 

1 - t - t k 

tk 

(13) - f 

n n-Xkjt) 
1<J<k 

where A^,/ are the solutions of Zk - Zk"~1 = 0. Clearly, 

(14) E KJ = I n xkJ = (-Dk~1 . 
/ < /< * 1<J<k 

Since, by Lemma A1 the Xkj are all distinct we have the partial fractions decomposition stated in the Lemma, Eq. (3). 

Lemma B2. Let k > 1. 

d5) fK„- £ ("-'-J*-'*") • 
0^n<(n-k)/k * ' 

Proof. From Eq. (2) in Lemma B1 we have 

(16) 0 * M = - ^ - — 
1-(t + tk) 

(u) -f* Etv/***-'/ 

(18) -£ i** £ M r*-'*» 
s>0 0<m<s 

s> 0 0<m<s 

(20) 
n>0 0<m<(n-k)/k 

Thus (15) follows from the definition of G/tM Note that i f £ = 7, 
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(2D 
0<m<n-1 

corresponding to summing Pascal's triangle horizontally. If k = 2, the case of Fibonacci numbers yields the familiar 

(22) f2gn 
0<m<(n~2)/2 

corresponding to summing the binomial coefficients lying upon lines of slope 1 through Pascal's triangle. In general one 
sums along lines of slope k - 1. See Figure 4. 

fl,5 = 16 

hj = 8 ....-••'" 

s* 

f3,10= 9 ,S' 
y' 

/ 

fdld = 14/ 

1 
I 2 1 s 

3 h/'' 
i i^<s¥ 
^^""\yy\M 
i yi / 15 
i / ' ' y 21 
l' / 8 28 
I / ' 9 36 
) / 10 45 
1 11 55 
1 12 66 
1 13 

1 
4 

10 
20 
35 
56 
84 

120 
165 

1 
5 

15 
35 
70 

126 
210 

1 
6 

21 
56 

126 

1 
7 

28 

Figure 4. The Numbers/^,, as Sums of Binomial Coefficients Lying Upon Lines of Slope k— 7 through Pascal's 
Triangle. (See Lemma B2.) 

Lemma B3. Let k > 1. Then 

(23) 

where the \k,j are the zeroes of 

Proof. From Eq. (3), 

(24) 

(25) 

(26) 

1<j<k k\kij-(k-1) 

zk-zk-1-i. 

Gk(t) = tk E Akrj Y, Ktitn , 
1*q<k n>0 

- E ^ E **.JKI. 

= E ' " E **JKJ • 
n>k 1<j'<k 
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Table 3 
Real and Complex Zeroes Rounded to Five Places, ^k,jJ= h 2, -, K of the Polynomial Zk - Zk~1 - 7 for k= 1,2,—, 10 
(The zeroes are listed in decreasing order of modulus. A more complete table of these roots, k-
nificant digits is available upon request .) 

* hc,k 
1 2.00000 
2 1.61803 -0.61803 
3 1.46557 -0.23279 ±i0.79255 
4 1.38028 0.21945 ±i0.9144 7 
5 1.32472 0.50000 ±i0.86603 
6 1.28520 0.67137 ±i0.78485 
7 1.25542 0.78019 ±i0.70533 
8 1.23205 0.85224 ± iO.63526 
9 1.21315 0.90173 ±10.57531 

10 1.19749 0.93677+ J0.52431 
F\xk> 1. Then 

1,2, -,20 to 28 sig-

-0.81917 
-0.66236+ i0.56 228 
-0.37333 ±i0.82964 
-0.10935 ±i0.93358 

0.10331 ±i0.9 5648 
0.26935 ±i0.94058 
0.39863 ±10.90691 

-0.88127 
-0.79855 ±i0.42110 
-0.61578 ± iO.68720 
-0.41683 ±i0.84192 
-0.23216 ±i0.92442 

-0.91159 
-0.86082 ± iO.33435 
-0.73720 ±i0.57522 -0.92957 

Lemma B4. 

(27) Jim_ - ^ — - X^max 
n-+" /k,n 

where X^max is the largest positive real root of Zk - Zk~1 - /. In fact, X#,max ^^k-

Proof. From Lemma B3, 

E BkM:,1 

(28) %n+1 = 1</<k . 
fk,n y * n 

1<j<k 

Define X^ m a x to be the zero of Zk - Zk~1 - / with largest absolute value. Then 

(29) fkiwH > 1<&k * A * ' m a x ' 
f ~ A/r,max 
Tk,n 

.utv X Kk,max 1 1<j<k 

Letting S7-+ °°, each sum in the quotient has one or two terms depending upon whether X^max is real or complex and 
in the latter case the limit need not exist. But from the proof of Lemma A2, X^ m a x is real and is equal to \k,k- (Each 
nonreal complex root has absolute value r such that 1 + r1~k > r or r < X ^ ^Xifk).) Since 

the Lemma follows. 
Lemma A8. Let k > 1. Then 

(30) 
where 

H<KnH = (l + M,n>1/(1~k), HO,0 « 1 

Proof. Clear 

XeM = Jim M, ~e-/? 

and 1-k Vt,n+1 = 1+Vin< V-hO* 1-
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LemmaA9. For k>0 
(31) XJkl >\Jk+V. 
In other words X1 (k) converges monotonically to 1 3S K —> oo , 

Proof. [2], litr = XJk),s = \Jk + U Thenr>1,s> 7, r js, and 
r(rk_rk-1_1)= 0f sk+1 _sk_1 = Q 

Subtracting the second equation from the first and dividing through by r- s we have 

(32) (rk+1-sk+1) _ (rk-sk) = r^J 
r-s r-s r-s 

But the left-hand side is positive because it equals 

(33) rk + (s- lHrk'1 + rk-2s + - + rsk-2+sk-1). 

Thus/*-s>0. 
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