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A sequence of sequences 5/ arising from the first column of matrix inverses of matrices containing certain columns 
of Pascal's triangle provided a fruitful study in [1]. Here, we use convolution arrays of the sequences S/ to form a 
sequence of matrix inverses, leading to inter-relationships between the sequences Sj. The proofs involve generating 
functions for the columns of infinite matrices, and have diverse applications. 

1. SEQUENCES OF MATRIX INVERSES 

In this paper, we return to the sequences S/ arising from the first column of PJ1 as in [1]. We form a series of nxn 
matrices P/j by placing every /^column of the convolution triangle for the sequenceS/ on and below the main di-
agonal, and zeroes elsewhere. Then, to relate to the matrix/5/ from [1] which was formed by writing the// + 1)st col-
umns of Pascal's triangle on and below the main diagonal, in the new notation, Pj-i-Poj, of/ every/^column of 

the convolution array for the sequence So = | 1 ,1 ,1 , - J - , which is Pascal's triangle. As a second example, the ma-
trix Pii3 would contain every third column of the convolution array for the Catalan sequence Sx written in triangu-
lar form. 

We call the inverse ofPfj the matrix PjJ and record these inverses in the tables that follow. 
Now, let us analyze the results. First, we look at the form of the elements of each matrix inverse, disregarding signs, 

for Pij, For/ = 1, the rows of Pascal's triangle appear on and below the main diagonal; these columns are also the 

columns of the convolution triangle for the sequenceS~f = j 1,1, 0, 0, 0, ••• I. The column generators, alternating 

signs included, are (1 - x) , which are the reciprocals of the column generators for Pascal's triangle, where we do 
not adjust for the triangular form. For/ - 2, we have alternate columns of Pascal's triangle, or alternate columns of 
the convolution triangle for S0. (In fact, notice that each array contains columns of the convolution array for its left-
most column.) For/ = 3f we ha?/e every third column of the convolution triangle forSit while/- 4 gives fourth col-
umns for S2. 

These results continue for P^j in Table 1.2. When / = 1, disregarding the alternating signs of the array, we have 

every column of the convolution triangle for the sequence $~3 = 4 1, 1, - 1 , 2, - 5 , 14, -42 , —I which contains 

the Catalan numbers or Sx, taken with alternating signs, following the initial term. If the generating function of Sx 

is CM, then the generating function for SL3 is MC(x). Then, for/ = 2, we have every second column of the array for 
S- i ; for/ = 3, every third column of the array forS0, or, every third column of Pascal's triangle. These results con-
tinue, so that when/=4, we have every fourth column of the convolution array for the Catalan numbers, oxSx;j= 5, 
the fifth columns of the array forS2;j-- 6, the sixth columns of the array for£3; and for / * 7, the seventh columns 
of the convolution array for£4. 

Inspecting Table 1.3 for the form ®fP$j verifies that these results continue. When/25 1, every column of the eon-

volution array for the sequence S_3 = 4 1,1, - 2 , 7, -30 , — }• appears. Notice that S_3 contains the elements of the 
first convolution of S2, or of S2

2! taken with alternating signs and with one additional term preceding the sequence. 
If the generating function for£2 is Dfx), then the generating function for£„3 is 1/D2(x). For/ = 2, we have every 
second column of the convolution array for S„2; j = 3, every third column of the array forSLj//= 4, every fourth 
column of the array for£0; —, and for/= 8, we have every eighth column of the array for£4. 

224 



SEQUENCES OF MATRIX INVERSES FROM PASCAL, 225 
CATALAN, AND RELATED CONVOLUTION ARRAYS 

Table 1.0 
Non-Zero Elements of the Matrices PQ- and PQJ 

D~1 'to 

1 
-1 

1 
-1 

1 
- 1 

1 
- 1 

2 
-B 
14 

1 
- 1 

3 
-12 

BB 
1 

-1 
4 

-22 
140 

1 
- 2 

3 
-4 

B 

1 
-3 

9 
-m 

1 
-4 
18 

-88 

1 
-B 
30 

-200 

phj 

1 
-3 

6 
-10 

1 
- 5 
20 

1 
-7 
42 

1 
-9 
72 

1 
-4 
10 

1 
- 7 

1 
-10 

1 
-13 

1 
- 5 1 

1 

1 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

•1 

1 
1 
1 
1 
1 

1 
2 
3 
4 
S 

1 
3 
6 

10 

1 
4 

10 
20 

1 
5 

15 
35 

PoJ 

1 
3 
6 

10 

1 
5 

15 

1 
7 

28 

1 
9 

45 

1 
4 

10 

1 
7 

1 
10 

1 
13 

1 
5 1 

1 

1 

1 

1 
- 1 

0 
0 
0 
1 

- 1 
1 

-1 
1 
1 

- 1 
2 

-5 
14 
1 

- 1 
3 

-12 
BB 

-273 

Ni 

1 
- 2 

1 
0 

1 
-3 

6 
-10 

1 
-4 
14 

-48 

1 
-5 
25 

-130 
700 

Table 1.1 
on*Zero Elements of P~* 1

! 

f hi 

1 
-3 

3 

1 
-5 
15 

1 
-7 
35 

1 
-9 
63 

-408 

1 
-4 

1 
-7 

1 
-10 

1 
-13 
117 

1 

1 

1 

1 
-17 1 

and/*/, 

1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
1 
1 
2 
5 

14 
42 

/ 

1 
2 
5 

14 

1 
3 
9 

28 

1 
4 

14 
48 

1 
5 

20 
75 

275 

PlJ 

1 
3 
9 

1 
5 

20 

1 
7 

35 

1 
9 

54 
273 

1 
4 

1 
7 

1 
10 

1 
13 

104 

1 

1 

1 

1 
17 1 
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Table 1.2 
Non-Zero Elements of P^j and P2j 

1 

2 

3 

4 

5 

6 

7 

1 
-1 
-1 
-2 
-5 

1 
-1 
0 
0 
0 

I 
-1 
1 

-1 
1 

1 
-1 
2 

-5 
14 

1 
-1 
3 

-12 
55 

1 
-1 
4 

-22 
140 

1 
-1 
5 

-35 
285 

1 
-2 
-1 
-2 

1 
-3 
3 

-1 

1 
-4 
10 

-20 

1 
-5 
20 

-75 

1 
-6 
33 

-182 

1 
-7 
49 

-357 

1 
-8 
68 

-606 

H2,j 

1 
-3 
0 

1 
-5 
10 

1 
-7 
28 

1 
-9 
54 

1 
-11 
88 

1 
-13 
130 

1 
-15 
270 

1 
-4 

1 
-7 

1 
-10 

1 
-13 

1 
-16 

1 
-19 

1 
-22 

1 

1 

1 

1 

1 

1 

1 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
12 
55 

1 
1 
3 
T2 
55 

1 
1 
3 
12 
55 

1 
2 
7 
30 

1 
3 
12 
55 

1 
4 
18 
88 

1 
5 
25 
130 

1 
6 
33 
182 

1 
7 
42 
245 

1 
8 
52 
320 

J 

1 
3 
12 

1 
5 
25 

1 
7 
42 

1 
9 
63 

1 
11 
88 

1 
13 
117 

1 
15 
150 

1 
4 

1 
7 

1 
10 

1 
13 

1 
16 

1 
19 

1 
22 

1 

1 

1 

1 

1 

1 

1 
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/ = 1 

/ = 2 

/ = 5 

/ = 7 

/ = 

1 
-1 
-2 
-7 
-30 

1 
-1 
-1 
-2 
-5 
1 

-1 
0 
0 
0 
1 

-1 
1 

-1 
1 

I 
-1 
2 

-5 
14 

1 
-1 
3 

-12 
55 

1 
-1 
4 

-22 
140 

1 
-1 
5 

-35 
285 

Fable 1, ,3 
Non-Zero Elements of P^-

ps 

1 
-2 
-3 
-10 

1 
-3 
0 

-1 

1 
-4 
6 

-4 

1 
-5 
15 

-35 

1 
-6 
27 

-110 

1 
-7 
42 

-245 

1 
-8 
60 

-456 

1 
-9 
81 

-759 

1 
J 

1 
-3 
-3 

1 
-5 
5 

1 
-7 
21 

1 
-9 
45 

1 
-11 
77 

1 
-13 
117 

1 
-15 
165 

1 
-17 
221 

1 
-4 

1 
-7 

1 
-10 

1 
-13 

1 
-16 

1 
-19 

1 
-22 

1 
-25 

1 

1 

1 

1 

1 

1 

1 

1 

and P3J 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 
1 
1 
4 
22 
140 
1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

1 
1 
4 
22 
140 

p3j 

1 
2 
9 
52 

1 
3 
15 
91 

1 
4 
22 
140 

1 
5 
30 
200 

1 
6 
39 
272 

1 
7 
49 
357 

1 
8 
60 
456 

1 
9 
72 
570 

1 
3 
15 

1 
5 
30 

1 
7 
49 

1 
9 
72 

1 
11 
99 

1 
13 
130 

1 
15 
165 

1 
17 
204 

1 
4 1 

1 
7 1 

1 
10 1 

1 
13 1 

1 
16 1 

1 
19 1 

1 
22 1 

1 
25 1 

To generalize, P"jj contains the sequence S/-/-/ along its first column and the/f/? columns of the convolution tri-
angle for the sequence £/-/-/, taken with alternating signs, on and below its main diagonal, with, of course, zeroes 
everywhere above its main diagonal. The sequences S/, / > 0, were explored in [1]. The sequences S,./, / > 2, are all 
related to the sequences S,- by 
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s-, - 1 = stf 
so that, if the initial one is deleted, the sequence £_./ is identical to the (i - 2h& convolution of the sequence S/_y, 
i> 2. Also, if the generating function for S; is G(x), then the generating function for 5- / - / \%1/G'(x), i> 1, andS_; 
has a generating function which is the reciprocal of that for Sn. 

There are other patterns which occur for the matrices P~Jm Except for the alternating signs, Pjj,\% identical to P;j 
fo r / = 2i + 1. Furthermore, this property still holds if we form Pfj from any set ofjth columns of the convolution 
triangle for S,; j = 2i + 1. For example P'J^ contained the same elements as Pft3 except for the alternating signs, 
where Pff3 contained the zeroeth, third, sixth, •••, columns of the convolution triangle for Sf so that its k**1 column 
was the (3k)th column of the convolution array. Form ̂ j to contain every third column of the convolution array 
fo rS / , but beginning from the first convolution, so that the kth column o f P / ^ i s t h e (3k + 1)st column of the array, 
and P*f3 has the same elements ^p\s, taken with alternating signs. Similarly, if we form the matrix P*'*3 from the 
(3k + 2)nd columns of the convolution array forSff P*f*3

1 has the same elements as P^*3 taken with alternating 
signs. For example, using 5 x 5 matrices, 

p*-1 
P1,3 ~ 

13 -

1 
2 
5 

14 
_42 

" 1 
3 
9 

28 
L.90 

0 
1 
5 

20 
75 

0 
1 
6 

27 
110 

0 
0 
1 
8 

44 

0 
0 
1 
9 

54 

0 
0 
0 
1 

11 

0 
0 
0 
1 

12 

0 
0 
0 
0 
1_ 

0" 
0 
0 
0 
1 

- 7 | 

= 

-7 

= 

- 1 
-2 

5 
-14 

_ 42 

r 1 
-3 

9 
-28 

I 90 

0 0 
1 0 

- 5 1 
20 - 8 

-75 44 

0 0 
1 0 

- 6 1 
27 - 9 

-110 54 

0 Q-| 
0 0 
0 0 
1 0 

-11 i j 
0 0 
0 0 
0 0 
1 0 

-12 1 
Notice that we can consider n x n submatrices of the infinite matrices of this paper, since for infinite matrices A, B, 
and C, if we knowthat/4# = £by generating functions, then it must follow that AB = C forn x n matrices^, B, and 
C, because each n x n matrix is the same as the n x n block in the upper left in the respective infinite matrix. We 
write the Lemma, 

Lemma. Let A be an infinite matrix such that all of its non-zero elements appear on and below its main diagonal, 
and le t^x /7 bethenxn matrix formed from the upper left corner of A Let B and C be infinite matrices with Bnxn 

and Cnxn the/7 x n matrices formed from their respective upper left corners. If AB = C, then Anxn&nXn = CnXn> 

Returning for a moment to Tables 1.1, 1.2, and 1.3, notice that the row sums of Pij are | 1, 2, 5, 14,42, - I, 

orS^-therowsumsof/^ are j 1, 2, 7,30,143, - | , or SJ; and the row sums of P33 are | l , 2, 9, 52, 320, •••} , 
or SI. We easily prove that 

Theorem. The successive, row sums of P,j are sf. 

Proof. Let S,(x) be the generating function for the sequence S/. Then the row sums are 

R(x) = SjM+xS'f'M+xZsf*1 *••• = Sj(x)/[1-xSlM] 

by summing the infinite geometric series. But, by [1 ] , 

/ BSiM-xSpUx), 

so that R(x) = Sf (x) upon simplication. 

2. PROOF OF RESULTS AND FURTHER APPLICATIONS 

Now, we establish firmly the matrix inverse results of this paper. LetSffx) denote the generating function for the 
sequence Sf, and let Sk I Sk~i mean that5^-7 is the solution to 

Sk(x/s(x» = S(x), 

with S(O) = I It will follow that 
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Now, it turns out that 

From this we can show 

as follows: 

is trivial, but this continues as 

and thus we can generally say 

<u>2 I w j 4-WQ I w_ j i 6_ 

s->Masfcj 
1 - (-x) 

= 1+x. 

1 1 
Sj-x) * Sj-x) * S2(-x) 

SjxSjx)) = S2(x) 

1 1 
Sj-x/1/SJ-x)) SJ-x)' 

1 1 
Sm(-x) Sm+1(-x) 

Notice that, if S0 (x) = 1/(1 - x), then Sn(x) satisfies 
/ 

1-xSn
n(x) 

S„M or 1 = Sn(x)-xS^7(x) 

Now, let us look at our general (Pascal) problem. (We denote each matrix by giving successive column generators.) 
The two infinite matrices 

(fm(x), fm+k(x), fm+2k(x), -) and (Am(x), Am+k(x), Am+2k(x), •-) 
are matrix inverses if 

A(x)f(xAk(x)) = 1 or f(x/[1/Ak(x)]) = 1/A(x). 

That is, 1/A(x) is k steps down the descending chain of sequences from f(x). Let us examine the two together. 
{S%M,S*M,SllM,~)-1 

is given by 
(A(x)/A

6(x)/A
11(x)/-h 

where 
SJx/1/AUx)) = 1/A(x) 

so we go down five sequences from S2(x): 

S2(x),Sx(x),S0(x),S_Jx) = 1/SJ-x),S_2(x) = l/SJ-xhS.Jx) = 1/S2(-x) 
so that 

1/AM = SJ-x). 
This verifies that 

1 o o o o i " ; r i o o o cr 
1 1 0 0 0 
3 6 1 0 0 

12 33 11 1 0 
55 182 88 18 1 

-1 1 0 0 0 
3 - 6 1 0 0 

[-12 3 3 - 1 1 1 0 
55 -182 88 -16 U 

Lemma. Two infinite matrices 
(f(x), xf(x)A(x), x2f(x)A2(x), x3f(x)A3 (x), -) and (g(x),xg(x)B(x),x2g(x)B2(x),x3g(x)B3(x), - J 

are inverses if 
g(x)B(x)A(xB(x))f(xB(x)) = 1. 
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There are several interesting applications. Consider the central column of Pascal's triangle, j 1, 2, 6, 20, - | 
which, upon proper processing, originally gave us the Catalan sequence. Let fM he the generating function for the 
central column of Pascal's triangle, and take 

fM = 1/sJ1-4x, A(x) - (1-^1-4x )/2x, g(x) = 1 -2x, B(x) = 1 -x, 

' 2x(1-x) 1-x B(x) 
so that B(x)A(x(B(x)) = /.Now 

f(x(B(x)) = -77^=r7l^=sr= —±- = - f -

so thatg(x)f(xB(x)) = 1 also. This matrix uses elements from the central column of Pascal's triangle and the columns 
parallel to it, and has inverse whose columns have the coefficients from the generating functions. For example, for 
the 5 x 5 case, 

1 0 0 0 0 \ ~ ; / 1 0 0 
2 1 0 0 0 \ / -2 1 0 
6 3 1 0 0 = 0 - 3 1 

10 10 4 1 0 / \ 0 2 -4 
20 35 56 5 1 / \ 0 0 5 - 5 1 

If we now go to themth columns, then 
glx)Bm(x)Am(x(B(x))f(xBM) = 1 

so it seems to naturally break into two separate parts: 
(1) B(x)A(x(B(x)) = 1 

(2) gMf(xBM) = 1, 

where we already know how to solve (1), but (2) is something new when combined with (1) since the above has to 
hold for ail m ̂ 0 . 

Let us consider S* = \ 1, 3, 15, 84, —J, the diagonal of Pascal's triangle, which, upon proper processing, lead to 
our sequence^ = J 1,1, 3, 12, 55, 273, - J. LztS*(x) be the generating function forS*, and take 

f(x) = Sjx), AfxJ = Sjx)f 

and let Sl(x) = C(x) be the generating function for the sequence Sx = | 1, 1,2,5, 14, 70,-J- , the Catalan sequence. 
Then, 

gM = 1-3xC(x) B(x) = 1-xC(x) 

- _ 1 _ _ * - 1 
" CM CM 

= 3 _2 ^ I 
Sjx) Sjx) 

Now, let S* = | 1,4, 28, 220, — }, the diagonal of Pascal's triangle which led to the sequence S3. Here, we use 
/ = Sjx)-xSjx) 

and we can write 
fM = Sjx), AM = SJx), BM = 1/SdM, and gM = 1-4xSjx) = 4/SJx)-3. 

Generally speaking, we take 
fM = S*kM, AM = Sk(x), BM = 1/Sk(x), gM = 1 - (k+1)xSk

k~
1M = t±±- - k. 
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Lemma. The two infinite matrices 
(f(x)Am(x),xf(x)Am+k(x), x*f(x)Am+2k(x),.-) and (g(xBm(x).xg(x)BmH(x), x2g(x)Bm+2k(x), - J 

are inverses \if(xBk(x))g(x) = 1 and A(xBk(x))B(x) = 1, simultaneously. 
The Lemma is the same as considering the two infinite matrices 

(F(x),xF(x)Ak(x),x2F(x)A2k(x), ••) and (G(x),xG(x)Bk(x),x2G(x)B2k(x), ~), 

where 
Fix) = f(x)Xn(x); G(x) = g(x)Bm(x); Ak(xBk(x))f(xBk(x))Am(xBk(x))Bm(x)g(x) = 1 

or 
[A(xBk(x))B(x)]m = 1 and f(xBk(x))g(x) = 1, MO) = B(O) = 1. 

With application to the sequences S/ of this paper, we can take 
fix) = DofxK A(x) = Sk(x), g(x) = 1-(k+ 1)Sk

k~
1(x), and Blx)- 1/Sk^(x). 

The above lemma can also be illustrated by taking 
f(x) = 1/(1 - x), A (x) =11+ x)/(1 - x), g(x) = (3 + x - yJ1 + 6x+~x~~*)/2, 

and 
B(x) = [~(1+x) + s/1 + 6x+x2]/2x. 

This arises from the triangular matrix (from a paper by Alladi [61) 
1 
1 1 
1 3 1 
1 5 5 1 
1 7 13 7 1 x = u + v + y 

where the column generators are successively given by 

/ x(l-f-x) xn(1+x)n 

1-x' U-x)\ ' ' " ' (1-Xf+1' 

The lemmas of this section also apply to some other interesting sequences. Suppose we take the sequence 
J1, 1, 2, 4, 8, 16, - 1 which is generated by 

n=0 

Let Hfix) = S(x), where S(O) = 1 and S(x) satisfies f(xS(x)) = S(x). Then H* f(x) = S(x) means that f(xS2(x)) = S(x), 
S(O) = I 

which is the generating function for | 1,1,3,11,45,197,903,-, \. (See Riordan [2], p. 168), while 
Hir^k)= H(g(x,, = hix)> 

which is the generating function for the sequence | l . 1,4,21, 126, 818, 5594, -J- given by Carlitz [4]. There is 
another sequence from the same article by Carlitz, but first we note^ = | l , 1,3,11,45, - , bn, -J- obeys 

In + 1)hn - 3(2n - 1)hn-1 + (n - 2)bn.2 = 0. 

Y 
u V 
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We solve the quadratic 

2xS2 -(x+DS+1 = 0 

S(x) = 1+*£j1+2x+x2 -8x 
4x 

SM= /+w/- f r+*L- 52 
4x 

n=*0 

From this, we should be able to establish the recurrence. We also note that, where C(x)= (1 - sJ1 -4x )/2xisthe 
generator for the Catalan sequence, 

ciTih.) -«" 1 + x \ (1+x)2 

which comes from Riordan [2 ] , p. 168. 
There is another application. Let f(x) generate the odd numbers. Then the solution to f(x($(x)) = S(x), S(O) = 7, is 

the sequence | 1, 3, 14, 79,494,3294, - J - given by Carlitz [4 ] , which has generating functions 

1+x 
(1-x)2 1 +3x + 5x2 +7xz * . » 

1+xS(x) = <w , 
(1-xS(x))2 " b{Xi 

1 + xS(x) = S(x) - 2xS2 (x) +x2S3 (x) 

0 = x2S3 (x) - 2xS2 (x) + (1- x)S(x) - 1, 

where S(x) generates | 1, 3, 14, 79,494, 3294, ••}. As verification, 
S = { 1,3, 14, 79,494, 3294, •• \ , S2 = { 1, 6,37, 242, 1658, - \ 

S3 = { 1, 9, 69, 516, •••} , -15° = { - 1 , 0, 0, 0, 0, 0, - } 

S = { 1,3,14, 79,494,3294,.. j . , -xS = { 0, - 1 , - 3 , - 1 4 , - 7 9 , -494, -\ 

-2xS2 = { 0, - 2 , -12 , -74 , -484, -3316, • } , x*S3 = { 0, 0, 1, 9, 69, 516, - \ 

with all vertical sums equalling zero. 
With the methods of this section, it is easily shown that, if Pjjte the matrix formed by moving each column oiPjj 

up to form a rectangular array, PjjP*j contains Pascal's triangle written in rectangular form, which is such a prolific 
result that it is the content of another paper [3 ] . Paul Bruckman has proved the matrix theorems used in this section 
in [5 ] . See [7] also. 
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