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In 1969, Parberry [1] posed and solved an interesting problem in population growth analogous to the rabbit
problem considered by Fibonacci. In this note we describe how one might treat a generalization of these prob-
lems. First, we state the problems of Fibonacci and Parberry and note what they have in common.

The situation considered by Fibonacci involves two types of rabbit which will be denoted B and £ (for baby
and female, respectively). Starting with one individua! of type B, a sequence of generations of rabbits is formed
as follows: Each individual of type B in the nth generation matures to become an individual of type F in the
fn + 1)t generation. Also, each individual of type F in the nth generation gives birth to an individual of type
8 in the {n + 7)°% generation, and survives to become an individual of type F in the (n + 7)°% generation. A
family tree may be drawn which represents this process; see Figure 1.
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Figure 1. Family Tree of Fibanacci’s Rabhits
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Parberry considered populations of diatoms, one-celled algae whose reproductive capabilities can be classi-
fied according to size and maturity. Changes in classification along with reproduction are assumed to take
place at regular intervals which will be called generations. Let/m and n denote natural numbers, and let

51, tty Sm, Sm+7, ty Sm+n
denote a classification of the diatoms. Diatoms of type S; for /=17, --, m split to form two new diatoms, one
of type S; and the other of type S;+7, but diatoms of type S,,+; fori =17, .-, n can only mature to hecome
diatoms of type Spy+i+7, where a diatom of type Sy, +,+7 is defined to be of type S;. For example, when
m =2, n =1, the family tree of diatoms descending from one individual of type S; is shown in Figure 2.
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Figure 2. Family Tree of Diatoms

The problems of Fibonacci and Parberry have common features which are embodied in the following gener-
alization. There is a finite set 7= { 1, -, t } of types of individuals, and each individual of type / in the n?
generation gives rise to 7;; individuals of type j in the (n + 1) generation (1 <i j<t/forn=0, 1, --. Also,
there is an initial population containing f; individuals of type /. Let f;{n) denote the number of individuals of
type i in the n ™ generation. (Thus, f; = £2(0)), and put

fln) = f1ln) + -+ #n).

The sequences
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(fifn):n =0, 1,-)

are of interest: How are they related, how should they be calculated, what is their rate of growth, and so on.
There is a very simple theory which explains these things.

Each of the fj(n — 1) individuals of type j in the {n — 1)t generation gives rise to fj individuals of type kin
then™ generation; hence, summing on j we have
(1) filn) = Frln)fyg + -+ Feln)feg.

This may be expressed in terms of matrices as

fr1f12-71t
fo7fa2 T2t

[f1(n) - feln)] = [f1ln = 1) feln=1)]] . . ,
fe1 fe2 = fr

or, with an obvious notational convention, this may be succinctly expressed as

2) fln) = fin — 1)F.
Using (2), an easy induction argument gives
(3) fln) = HO)F".

Now (3) can be used to show that each of the sequences (f;(n): n =0, 1, ---) satisfies a certain difference
equation, hence, the sequence (#(n) : n = 0, 1, ---) also satisfies this difference equation. Recall the Cayley-
Hamilton Theorem: Every square matrix M satisfies its characteristic equation. Thus, if we form the polynom-
ial cg(x) = det (x/ — F), where / denotes the ¢ X t identity matrix, then c(F) is the all-zero matrix. Hence,
(4) Fce(F) = 0
forn=20,1, . Let

celx) = xt—axt! vz a,,
and let f;;(n) denote the (i)™
(5) fijln +t) — apfijln +t — 1) — = afii(n) = 0

entry of F7 forn=20, 1, ---. Then (4) implies

forn=0, 1, --and 7 </, j <t Since each of the sequences
(fij(n):n = 0, 1, )

satisfies the same difference equation given in (5), any linear combination of these sequences also satisfies this
difference equation. In particular, this implies

(6) fi(ﬂ‘/'t) = ajf,'(ll+t—7)+...+atfl,(n)
forn =0, 1, - ; also, the sequence
(fln):n =0, 1, )

satisfies this difference equation.

The matrix F may satisfy a polynomial equation with degree less than ¢ if so, this polynomial may be used
in place of c£(x) to obtain alower order difference equation. It is well known and easy to prove that there is a
polynomial, unique up to a constant factor, having minimal degree such that F satisfies the corresponding
polynomial equation. This polynomial, called the minimal polynomial of F, is a factor of cg(x ).

Returning to Fibonacci's problem, the matrix involved is
1
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The minimal polynomial of this matrix isx? — x — 7: Hence, #(n), the number of rabbits in the n th generation
satisfies '
(7 fln+2)—fln+1)—fn) =0

forn =40, 1, --; also, we have f(0) = f(1) = 1, so this gives Fibonacci's sequence 1,1, 2,3, 5, 8, .

A more realistic model of a rabbit population would reflect the fecundity of the female depending on her
age. For example, type 1 matures to become type 2; type 2 has a litter of 3 type 1's and matures to become
type 3; type 3 has a litter of 4 type 1's and matures to become type 4; type 4 has alitterof 2type 1's and
dies. The matrix involved is

(8)

N B w o
[ = I = B
o0 -0
o -0 o

and the characteristic equation is
Xt —3x2 —4x -2 = (x +1)[x®* —x* - 2x = 2).

Suppose the initial population consists of one rabbit of type 1, then the family tree shown in Figure 3 results.
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Figure 3
The number of rabbits in the n ™" generation satisfies
(9) fln+4) = 3fln +2) +4f(n + 1) + 2f(n),
but it is easy to check that the initial conditions
flo) = /1) =1, f2) =4 and £3)=8
give rise to a sequence 1, 7, 4, 8, 18, --- which satisfies the lower order difference equation
(10 fin+3) = fln+2)+2fn+ 1) +2f(n).
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This relation arose because
X3 —x*=-2x-2
is a factor of
X —3x% —4x -2
Since
X3 —x?*=2x-2
has a real zero 0 between 2.2 and 2.3, it follows that
fln) > (2.2)"
for all sufficiently large 7.
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which tends to _
log 1+2 5

as n — = and this completes the proof.

in addition we want to mention another interesting property possessed by the sequences of the previous
theorems. This property can be shown by applying a result of Vanden Eynden (see [2] p. 307): Let {C,,/bea
sequence of real numbers such that the sequence (C,,/m/ is u.d. mod 1 for all integers m > 2. Then the se-
quence {/C,]) of integral parts is u.d. in the ring of integers Z. '

Theorem 4. The sequences
(fog F1% ], (fog HoHpl) and  ([log (Hy + Hpy )l
are ud. in Z.

Pmof. It is easily seen that for all non-zero integers m the expressions
1 1/k 7 ® 7
nT'Og Fn/ A log (HaH,)  and o log (Hp, + H)

satisfy the condition in van der Corput's Theorem.
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