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In 1969, Parberry [1] posed and solved an interesting problem in population growth analogous to the rabbit 
problem considered by Fibonacci. In this note we describe how one might treat a generalization of these prob-
lems. First, we state the problems of Fibonacci and Parberry and note what they have in common. 

The situation considered by Fibonacci involves two types of rabbit which will be denoted B and F (for baby 
and female, respectively). Starting with one individual of type B, a sequence of generations of rabbits is formed 
as follows: Each individual of type B in the nth generation matures to become an individual of type F in the 
(n + 1)st generation. Also, each individual of type F in the nth generation gives birth to an individual of type 
B in the (n + l)st generation, and survives to become an individual of type F in the (n + l)st generation. A 
family tree may be drawn which represents this process; see Figure 1. 
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Figure 1. Family Tree of Fibonacci's Rabbits 
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Parberry considered populations of diatoms, one-celled algae whose reproductive capabilities can be classi-
fied according to size and maturity. Changes in classification along with reproduction are assumed to take 
place at regular intervals which will be called generations. Let/77 and n denote natural numbers, and let 

$1* ' " / Srrif Sm+1 * "V $m+n 

denote a classification of the diatoms. Diatoms of type Sj for / = 7, —, m split to form two new diatoms, one 
of type Sj and the other of type Sj+f, but diatoms of typeSm+j for / = 7, —, n can only mature to become 
diatoms of type Sm+j+i, where a diatom of type Sm+n+i is defined to be of type Sj. For example, when 
m = 2, n = 1, the family tree of diatoms descending from one individual of type Sj is shown in Figure 2. 

generation number 

Figure 2. Family Tree of Diatoms 

The problems of Fibonacci and Parberry have common features which are embodied in the following gener-
alization. There is a finite set T- | 7, - , . t \ of types of individuals, and each individual of type / in the nth 

generation gives rise to f;j individuals of type/ in the (n + 1)stgeneration (1 <i,j< fjfor/7 = Of 1, • - . Also, 
there is an initial population containing f; individuals of type i. Let f,(n) denote the number of individuals of 
type / in the nth generation, (Thus, f; = f2(0)), and put 

f(n) = fj(n) + - + ft(n). 

The sequences 
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(fi(n):n = 0, 1,~) 

are of interest: How are they related, how should they be calculated, what is their rate of growth, and so on. 
There is a very simple theory which explains these things. 

Each of the fj(n - V individuals of type / in the (n - 1)st generation gives rise to fy individuals of type k\x\ 

the/7 generation; hence, summing on/we have 

(1) fk(n) = f1(n)f1k + -+ft(n)ftk. 

This may be expressed in terms of matrices as 

filfl2'"flt 

ffjfn) -ft(n)] = [f7(n - 1) -ft(n - 1)] 
f21 f22-ht 

ft1 ft2 

or, with an obvious notationa! convention, this may be succinctly expressed as 

(2) l(n) = f(n- 1)F. 

Using (2), an easy induction argument gives 

(3) f(n) = J(0)Fn. 

Now (3) can be used to show that each of the sequences (f-,(n): n = 0, 1, —) satisfies a certain difference 
equation, hence, the sequence (f(n) : n = 0, 1, —) also satisfies this difference equation. Recall the Cayley-
Hamilton Theorem: Every square matrix M satisfies its characteristic equation. Thus, if we form the polynom-
ial cp(x) = det (xl - F), where / denotes the t x t identity matrix, then cp(F) is the all-zero matrix. Hence, 

(4) FncF(F) = 0 

ior n = 0, I - . Let 

cp(x) = xf- a-jXt" at, 

and let f,j(n) denote the (jj)th entry of Fn for/7 = 0, I - . Then (4) implies 

(5) fjj(n + t)- aif-,j(n + t-1) atfjj(n) = 0 -

for n = 0, 1, ••• and / < i, j < t. Since each of the sequences 

(fij(n):n = 0, 1,-) 

satisfies the same difference equation given in (5), any linear combination of these sequences also satisfies this 
difference equation. In particular, this implies 

(6) f,(n + t) = a1fj(n + t - l ) + - + atfj(n) 

for A7 = 0, 1, •" ; also, the sequence 

(f(n):n = 0, 1,-) 

satisfies this difference equation. 
The matrix F may satisfy a polynomial equation with degree less than t; if so, this polynomial may be used 

in place of cp(x) to obtain a lower order difference equation. It is well known and easy to prove that there is a 
polynomial, unique up to a constant factor, having minimal degree such that F satisfies the corresponding 
polynomial equation. This polynomial, called the minimal polynomial Qi F, is a factor of Cf(x). 

Returning to Fibonacci's problem, the matrix involved is 
fO 1 ' 

/ 7 (?!) 
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The minimal polynomial of this matrix is A-2 - X - 1: Hence, fin), the number of rabbits in then generation 
satisfies 
(7) fin +2)- f(n + 1) - fin) = 0 

for/7 = Q, 7, •••; also, we have f(0) = f(l) = 1, so this gives Fibonacci's sequence 1,1, 2, 3, 5, 8, —. 
A more realistic model of a rabbit population would reflect the fecundity of the female depending on her 

age. For example, type 1 matures to become type 2; type 2 has a litter of 3 type 1's and matures to become 
type 3; type 3 has a litter of 4 type 1's and matures to become type 4; type 4 has a litter of 2 type 1's and 
dies. The matrix involved is 

(8) 
0 1 0 0 
3 0 1 0 
4 0 0 1 
2 0 0 0 

and the characteristic equation is 
x4 -3x2 -4x-2 = (x+1)(x3 -x2 -2x-2). 

Suppose the initial population consists of one rabbit of type 1, then the family tree shown in Figure 3 results. 
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Figure 3 

th , The number of rabbits in the n generation satisfies 
(9) fin + 4) = 3 fin +2)+ 4f(n + 1) + 2f(n)f 

but it is easy to check that the initial conditions 

HO) = f(1) = 1, f(2) = 4, and f(3) = 8 

give rise to a sequence 1, 7, 4, 8, 18, - which satisfies the lower order difference equation 
(10) fin + 3) = fin +2) + 2f(n +1)+ 2f(n). 
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This relation arose because 

x3 ~x2 -2x-2 

is a factor of 

x4 - 3x2 -4x-2. 

Since 

x3-x2~2x-2 

has a real zero 9 between 2.2 and 2.3, it follows that 

fin) > (2.2)n 

for all sufficiently large n. 
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which tends to „ .-
log 1 ^ ^ 

as n -» <*> and this completes the proof. 
In addition we want to mention another interesting property possessed by the sequences of the previous 

theorems. This property can be shown by applying a result of Vanden Eynden (see [2] p. 307): Let (Cn) be a 
sequence of real numbers such that the sequence (Cn/m) is u.d. mod 1 for all integers m > 2. Then the se-
quence ([Cn]) of integral parts is u.d. in the ring of integers Z . 

Theorem 4. The sequences 
([\mFn/kll ([\o$HnH*]) and f/log (Hn + H*n)]) 

are u.d. in Z . 
Proof. It is easily seen that for all non-zero integers m the expressions 

i l o g F1
n
/k, 1- log (HnH*) and ± log (Hn + H*n) 

satisfy the condition in van der Corput's Theorem. 
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