A slight extension of the foregoing argument provides another proof of the main theorem of Wyler [10]. In fact, Wyler [10, Theorem 4] is valid for every purely periodic second-order Lucas sequence over a commutative ring with 1 satisfying the following two properties: $1+1$ is not a zero divisor, and $u^{2}=1$ implies either $u=1$ or $u=-1$.

REFERENCES

1. K. Barner, "'Zur Fibonacci-Folge modulo p," Monatsh. Math., 69 (1965), pp. 97-104.
2. R. D. Carmichael, "On Sequences of Integers Defined by Recurrence Relations," Quart. J. Math., 48 (1920),pp. 343-372.
3. E. C. Dade, D. W. Robinson, O. Taussky, and M. Ward, "Divisors of Recurrent Sequences," J. Reine Angew. Math., 214/215 (1964), pp. 180-183.
4. R. J. DeCarli, "Periodicity Over the Ring of Matrices," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 466-468.
5. D. L. Herrick, "On the Periodicity of the Terminal Digits in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 535-538.
6. D. W. Robinson, "The Fibonacci Matrix Modulo m," The Fibonacci Quarterly, Vol. 1, No. 1 (Feb. 1963), pp. 29-36.
7. J. Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 1. (Feb. 1963), pp. 37-45.
8. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.
9. M. Ward, "The Modular Period of a Linear Integral Recurrence," unpublished manuscript dated Europe; JulyOctober, 1962.
10. O. Wyler, "On Second-Order Recurrences," Amer. Math. Monthly, 72 (1965), pp. 500-506.

**

LETTER TO THE EDITOR

GENERALIZED FIBONACCI NUMBERS AND UNIFORM DISTRIBUTION MOD 1

L. KUIPERS

Mollens, Valais, Switzerland

In the following I want to comment on a paper by William Webb concerning the distribution of the first digits of Fibonacci numbers [1] and to give a partial answer to some questions raised by the author. In fact, restriction to Fibonacci-related sequences makes it possible to obtain a number of results. (F_{n}) or $1,1,2,3,5, \ldots$ stands for the sequence of Fibonacci numbers.
Theorem 1. Let k be an integer different from 0 . Then the sequence $\left(\log F_{n}^{1 / k}\right)$ is uniformly distributed $\bmod 1(a b b r e v i a t e d ~ u . d . \bmod 1)$.
Proof. We apply a classic result of J. G. van der Corput: Let $\left(u_{n}\right)$ be a sequence of real numbers. If

$$
\lim _{n \rightarrow \infty}\left(u_{n+1}-u_{n}\right)
$$

exists and is irrational, then the sequence $\left(u_{n}\right)$ is $u . d . \bmod 1$. See [2] , p. 28.
Now set $u_{n}=\log F_{n}^{1 / k}$. Then

$$
u_{n+1}-u_{n}=\log F_{n+1}^{1 / k}-\log F_{n}^{1 / k}=\frac{1}{k} \log \frac{F_{n+1}}{F_{n}}
$$

which tends to

