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A slight extension of the foregoing argument provides another proof of the main theorem of Wyler [10], In fact, 
Wyler [10, Theorem 4] is valid for every purely periodic second-order Lucas sequence over a commutative ring with 
1 satisfying the following two properties: 1 + 1 is not a zero divisor, and u2 = 1 implies either u = 1 or u = - 1 . 
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LETTER TO THE EDITOR 

GENERALIZED FIBONACCI NUMBERS AND UNIFORM DISTRIBUTION MOD 1 

L KUBPERS 
Mollens, Valais, Switzerland 

In the following I want to comment on a paper by William Webb concerning the distribution of the first digits 
of Fibonacci numbers [1] and to give a partial answer to some questions raised by the author. In fact, restric-
tion to Fibonacci-related sequences makes it possible to obtain a number of results. (Fn) or 1, 1, 2, 3, 5, -
stands for the sequence of Fibonacci numbers. 

Theorem 1. Let k be an integer different from 0. Then the sequence (log Fn ) is uniformly distributed 
mod 1 (abbreviated u.d. mod 1). 

Proof. We apply a classic result of J. G. van der Corput: Let (un) be a sequence of real numbers. If 

Jim^ (un+1-un) 

exists and is irrational, then the sequence (un) is u.d. mod 1. See [2 ] , p. 28. 
Nowsetf/n = logF/ / j t . Then 

un+, - un = log F'n§ - log F1
n

/k = I log F-^± , 

which tends to 

[Continued on page 253.] 


