Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Advanced Problem Section solution to $\mathrm{H}-237$.

REFERENCES

1. I. J. Good, "A Reciprocal Series of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 4 (Dec. 1974), p. 346.
2. D. A. Millin, Problem H-237, The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), p. 309.
3. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin, Boston, 1969.
4. I. D. Ruggles, "Some Fibonacci Results Using Fibonacci-Type Sequences," The Fibonacci Quarterly, Vol. 1, No. 2 (April 1963), pp. 75-80.
5. Ken Siler, "Fibonacci Summations," The Fibonacci Quarterly, Vol. 1, No. 3 (Oct. 1963), pp. 67-69.
6. V. E. Hoggatt, Jr., and Marjorie Bicknell, "A Reciprocal Series of Fibonacci Numbers with subscripts $k 2^{n}$," The Fibonacci Quarterly, to appear.
7. I. J. Good and P. S. Bruckman, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type," The Fibonacci Quarterly, Vol. 14, No. 3 (Oct. 1976), pp. 193-196.
8. L. Carlitz, private communication.

** **

[Continued from Page 253.]
Then the sequence

$$
\left(w_{n}\right)=\left(\log H_{n} H_{n}^{*}\right)
$$

is u.d. $\bmod 1$.
Proof. We have

$$
w_{n+1}-w_{n}=\log \frac{H_{n+1}}{H_{n}}+\log \frac{H_{n+1}^{*}}{H_{n}^{*}}
$$

which tends to

$$
2 \log \frac{1+\sqrt{5}}{2}
$$

as $n \rightarrow \infty$ for

$$
\frac{H_{n+1}}{H_{n}}=\frac{q F_{n}+p F_{n-1}}{q F_{n-1}+p F_{n-2}}=\frac{q\left(F_{n} / F_{n-1}\right)+p}{q\left(F_{n-1} / F_{n-2}\right)+p} \cdot \frac{F_{n-1}}{F_{n-2}}
$$

goes to

$$
\frac{1+\sqrt{5}}{2}
$$

as $n \rightarrow \infty$
Theorem 3. Let $p, q, p^{*}, q^{*}, H_{n}$ and H_{n}^{*} have the same meaning as in Theorem 2. Then the sequence

$$
\left(x_{n}\right)=\left(\log \left(H_{n}+H_{n}^{*}\right)\right)
$$

is u.d. mod 1.
Proof. By the definitions of H_{n} and H_{n}^{*} we have

$$
H_{n}+H_{n}^{*}=\left(q+q^{*}\right) F_{n-1}+\left(p+p^{*}\right) F_{n-2} \quad(n \geqslant 3)
$$

and so we see that

$$
x_{n+1}-x_{n}=\log \left(\left(H_{n+1}+H_{n+1}^{*}\right) /\left(H_{n}+H_{n}^{*}\right)\right)=\log \frac{\left(q+q^{*}\right) F_{n}+\left(p+p^{*}\right) F_{n-1}}{\left(q+q^{*}\right) F_{n-1}+\left(p+p^{*}\right) F_{n-2}},
$$

[Continued on Page 281.]

