This relation arose because

$$
x^{3}-x^{2}-2 x-2
$$

is a factor of

$$
x^{4}-3 x^{2}-4 x-2
$$

Since

$$
x^{3}-x^{2}-2 x-2
$$

has a real zero θ between 2.2 and 2.3 , it follows that

$$
f(n)>(2.2)^{n}
$$

for all sufficiently large n.

REFERENCE

1. Edward A. Parberry, "A Recursion Relation for Populations of Diatoms," The Fibonacci Quarterly, Vol. 7, No. 4 (Dec. 1969), pp. 449-456.

*

[Continued from Page 276.]
which tends to

$$
\log \frac{1+\sqrt{5}}{2}
$$

as $n \rightarrow \infty$ and this completes the proof.
In addition we want to mention another interesting property possessed by the sequences of the previous theorems. This property can be shown by applying a result of Vanden Eynden (see [2] p. 307): Let (C_{n}) be a sequence of real numbers such that the sequence $\left(C_{n} / m\right)$ is u.d. $\bmod 1$ for all integers $m \geqslant 2$. Then the sequence ($\left[C_{n}\right]$) of integral parts is u.d. in the ring of integers \mathbb{Z}.

Theorem 4. The sequences

$$
\left(\left(\log F_{n}^{1 / k}\right]\right), \quad\left(\left(\log H_{n} H_{n}^{*}\right]\right) \quad \text { and } \quad\left(\left[\log \left(H_{n}+H_{n}^{*}\right)\right]\right)
$$

are u.d. in Z.
Proof. It is easily seen that for all non-zero integers m the expressions

$$
\frac{1}{m} \log F_{n}^{1 / k}, \quad \frac{1}{m} \log \left(H_{n} H_{n}^{*}\right) \quad \text { and } \quad \frac{1}{m} \log \left(H_{n}+H_{n}^{*}\right)
$$

satisfy the condition in van der Corput's Theorem.

REFERENCES

1. William Webb, "Distribution of the First Digits of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 13, No. 4 (Dec. 1975), pp. 334-336.
2. L. Kuipers and H. Niederreiter, "Uniform Distribution of Sequences," 1974.
