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ON THE HARRIS MODIFICATION OF THE EUCLIDEAN ALGORITHM 

G.J. RIEGER 
Institut fii'rMathematik, Technische Universitat Hannover, Hannover, Germany 

V. C. Harris1 (see D. E. Knuth2 also) modified the Euclidean algorithm (= algorithm by greatest integers) for find-
ing the gcd of two odd integersa>A > 1. The conditionsa = bq + r, \r\ <b, 2\r define the integersq,r uniquely. In 
case r=0, stop. In caser^O, divider by its highest power of 2 and obtain*? (say); proceed with/?, \c\ instead oia,b. 
Denote by H(a,b) the number of steps in this Harris algorithm. 

Example: 83 = 47-1+4.9, 47 = 9-5 + 2.1, 9 = 1-9; //(83,47) = 3. 
Denote by E(a,b) resp. N(a,b) the number of steps in the algorithm by greatest resp. nearest integers for a > b > 0. 

According to Kronecker, N(a,b) < E(a,b) always. In this note we prove that H(a,b) is sometimes much larger than 
E(a,b) and sometimes much smaller than N(a,b). 

Let 
L . , c0 := I cn+i = 2cn + 5 (n > 0); 

obviously 
r u . E(cn+1,cn)<5 (n > 01 
Furthermore, since , • , _ 

Cn+2 = 3cn+i - 2cn, 2\ cn (n > 0), 
the choice ak = ck/ bk = ck- / (k > 0) gives 

Theorem 1. For every integer k > 0 there exist odd integersak>bk>Q with 
E(ak,bk) < 5, H(ak,bk) = k. 

Let 
vo '= 0, v1 := 1, vn := 2vn„1 + vn-2 (n > 1); 

then_ 
ton+U Vn) = h *n < 3n"1, 2\vn ~ 2\n (n > 0). 

1 The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), pp. 102-103. 
2 The Art of Computer Programming, Vol. 2, "Seminumerical Algorithms," Addison-Wesley Pub., 1969, pp. 300, 316 
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