REFERENCES

1. T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd Ed., MacMillan, London, 1931.
2. I. J. Good, "A Reciprocal Series of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 4 (Dec. 1974), p. 346 .
3. I. J. Good and T. N. Grover, "The Generalized Serial Test and the Binary Expansion of $\sqrt{2}$; Corrigendum and Addition," J. Roy. Statist Soc., A. Vol. 131 (1968), p. 434.
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1938.
5. V. E. Hoggatt, Jr., Private communication (14 December, 1974).
6. D. A. Millin, Advanced problem No. H-237, The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), p. 309.
7. V. E. Hoggatt, Jr. and Marjorie Bicknell, "A Primer for the Fibonacci Numbers, Part XV: Variations on Summing a Series of Reciprocals of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 14, No. 3, pp. 272-276.

ON THE HARRIS MODIFICATION OF THE EUCLIDEAN ALGORITHM

G. J. RIEGER

Institut für Mathematik, Technische Universität Hannover, Hannover, Germany
V. C. Harris ${ }^{1}$ (see D. E. Knuth ${ }^{2}$ also) modified the Euclidean algorithm (= algorithm by greatest integers) for finding the gcd of two odd integers $a>b>1$. The conditions $a=b q+r,|r|<b, 2 \mid r$ define the integers q, r uniquely. In case $r=0$, stop. In case $r \neq 0$, divide r by its highest power of 2 and obtain c (say); proceed with $b,|c|$ instead of a, b. Denote by $H(a, b)$ the number of steps in this Harris algorithm.

Example: $\quad 83=47 \cdot 1+4 \cdot 9, \quad 47=9 \cdot 5+2 \cdot 1, \quad 9=1 \cdot 9 ; \quad H(83,47)=3$.
Denote by $E(a, b)$ resp. $N(a, b)$ the number of steps in the algorithm by greatest resp. nearest integers for $a>b>0$. According to Kronecker, $N(a, b) \leqslant E(a, b)$ always. In this note we prove that $H(a, b)$ is sometimes much larger than $E(a, b)$ and sometimes much smaller than $N(a, b)$.
Let
obviously

$$
\begin{gathered}
c_{0}:=1, \quad c_{n+1}=2 c_{n}+5 \quad(n \geqslant 0) \\
E\left(c_{n+1}, c_{n}\right) \leqslant 5 \quad(n \geqslant 0) . \\
c_{n+2}=3 c_{n+1}-2 c_{n}, \quad 2 \lambda c_{n} \quad(n \geqslant 0),
\end{gathered}
$$

the choice $a_{k}=c_{k}, b_{k}=c_{k-1}(k>0)$ gives
Theorem 1. For every integer $k>0$ there exist odd integers $a_{k}>b_{k}>0$ with

Let

$$
E\left(a_{k}, b_{k}\right) \leqslant 5, \quad H\left(a_{k}, b_{k}\right)=k .
$$

then

$$
v_{0}:=0, \quad v_{1}:=1, \quad v_{n}:=2 v_{n-1}+v_{n-2} \quad(n>1) ;
$$

$$
\left(v_{n+1}, v_{n}\right)=1, \quad v_{n} \leqslant 3^{n-1}, \quad 2\left|v_{n} \Leftrightarrow 2\right| n \quad(n \geqslant 0) .
$$

${ }^{1}$ The Fibonacci Quarterly, Vol. 8, No. 1 (February, 1970), pp. 102-103.
${ }^{2}$ The Art of Computer Programming, Vol. 2, "Seminumerical Algorithms," Addison-Wesley Pub., 1969, pp. 300, 316

