Substituting into (7) and changing the variable x to z by $x=(2 / \sqrt{5}) z$, obtain

$$
\left(1-z^{2}\right) T_{2 n+1}^{\prime \prime}(z)-z \cdot T_{2 n+1}^{\prime}(z)+(2 n+1)^{2} T_{2 n+1}(z)=0
$$

defining the required polynomials [4: 22.6 .9 p . 781]. The case for k even may be handled similarly.

REFERENCES

1. David G. Beverage, "A Polynomial Representation of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 9, No. 5 (Dec. 1971), pp. 541-. 544.
2. Nathan Jacobson, Lectures in Abstract Algebra, D. Van Nostrand, 1951, Vol. 1, p. 9.
3. L. E. Dickson, New First Course in the Theory of Equations, John Wiley \& Sons, 1960, p. 15, Th. 4.
4. Handbook of Mathematical Functions, U.S. Dept. Commerce, National Bureau of Standards, Applied Math Series 55, pp. 773-795.

*

[Continued from page 196.]
Let $k>0,2 \mid k, K:=4 k+3$; the conditions

$$
v_{k+1} r_{k}+v_{k} r_{k+1}=2^{K}, \quad 0<r_{k+1} \leqslant 2 v_{k+1}, \quad 2 \nmid r_{k+1}
$$

define the integers r_{k+1}, r_{k} uniquely. Then $2 r_{k+1}<r_{k}$. Let
then

$$
r_{j}:=2 r_{j+1}+r_{j+2} \quad(j=k-1, k-2, \cdots, 1)
$$

$j=1$ gives

$$
0<2 r_{j+1}<r_{j}, \quad 2 \nmid r_{j} \leftrightarrow 2 \nmid i, \quad v_{j+1} r_{j}+v_{j} r_{j+1}=2^{K} \quad(j=k-1, k-2, \cdots, 1)
$$

$$
2 r_{1}+r_{2}=2^{K}, \quad 0<2 r_{1}<2^{K} .
$$

Let $y_{k}:=2 \cdot 2^{K}+r_{1}, x_{k}:=3 y_{k}+2^{K}$; then $2 \cdot 2^{K}<y_{k}, 2 \nmid y_{k}, 2 \nmid x_{k}$. The defining equation for x_{k} gives $H\left(x_{k}, y_{k}\right)=2$. The defining equations for $x_{k}, y_{k}, r_{j}(j=1,2, \cdots, k-1)$ are the beginning of aii algorithm by greatest and by nearest integers for x_{k}, y_{k} and therefore $N\left(x_{k}, y_{k}\right)>k$. For an arbitrary integer $s>0$, let $g_{s}:=x_{s}, h_{s}:=y_{s}$ in case $2 \mid s$ and $g_{s}:=x_{s+1}, h_{s}:=y_{s+1}$ in case $2 \chi \mathrm{~s}$. This proves
Theorem 2. For every integer $s>0$ there exist odd integers $g_{s}>h_{s}>0$ with $E\left(g_{s}, h_{s}\right) \geqslant N\left(g_{s}, h_{s}\right)>s$, $H\left(g_{s}, h_{s}\right)=2$.
Nothing is known about the average size of $H(a, b)$.
\cdots

