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INTRODUCTION 

Two problems from the theory of linear recurrent sequences are considered in this paper. The first is to establish 
the existence of the rank of the Lucas sequence over an arbitrary ring with an identity. In particular, a theorem of 
Wyler [10, Theorem 1], for second-order sequences over a commutative ring, is generalized to sequences of arbitrary 
order over an arbitrary (not necessarily commutative) ring. The second problem is to determine the period of a purely 
periodic Lucas sequence as a function of its rank. Solutionsto this problem have previously been given in special cases: 
Vinson [7, Theorem 3] and Barner [1 , Theorem 2] for the modular Fibonacci sequence; Ward [9] for modular inte-
gral sequences of arbitrary order in case the characteristic polynomial of the recurrence has distinct roots; and Wyler 
[10, Theorem 4] for second-order sequences over a commutative ring with odd prime power characteristic. A solu-
tion is given in the present paper for linear recurrent sequences of arbitrary order over an arbitrary commutative ring 
with an identity. 

1. PERIODIC LINEAR RECURRENT SEQUENCES 

Let R be an associative ring with an identity 1, and let a/, —,fy be elements of /?. A sequence (w): wQ, wu —of 
elements in R that satisfy the recurrence 

wn+k = wn+k-iai + ~' + wnak 

for/7 > 0 is said to be a (right) linear recurrent sequence associated with the list fa/ , —, akl Let S(a-j, —, a^J be the 
collection of all linear recurrent sequences over R associated with (a^f —, a^J and let 

/ 0 0 - 0 ak 

A = I / 0 •». 0 ak-i 

\ 0 0 - / a7 

be the companion matrix of (ai, —, a -̂1 
The Lucas sequence of S(a1f - , a^) is the sequence (u): u0, uu - associated with the list fa;, -ak) such that 

ug = Q, '••, Uk-2=0, Uk-1 = /. (In case/r = 7, thenuo = /). For A7 a non-negative integer and e^ = (0, —, 0, 1)e/? , 
let Un e Rkxk be the matrix with ekAf~1+n as its ith row, / = 7, —, k. Since the rows of U0 are of the form €k = O, 
. - , O, 1), ekA = (O, »., 7, */, - , ekA

k~1 = (1, * - , *), then U0 is invertible in Rkxk. 

Lemma 1. Let (w)^S(aj, • •, akl Then for A > O, 

(wn, - , wn+k-i) = (w0, - , wk-i)A
n = (w0< '" ,Wk-i)UQ Un. 

Proof. By finite induction on /?, both the firstequality and Un = UQA11 are valid. Thus, since U0 is invertible, then 
An = U~Q Un, and the second equality holds. 

Let (w) <ES(ai, "v ak)- I f t n e r e 's a l ' s t of k consecutive elements of (w) that is equal to a preceding list of A- con-
secutive elements of (w), then the sequence is said to be of finite period. Specifically, if 

(wa+v, - / wa+v+k-1> = (WQ, - , wa+k-lh 
with a+v> a> 0, is the first such list, then W&, wa+i, ---is periodic of period v. In this case (w) is said to be period-
ic of index a and period v. If the index a= 0, then (w) is said to be purely periodic. 

Similarly, the matrix A is said to be periodic if some term of the sequence /, A, A2, — is equal to a preceding term. 
210 
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\iAa = Aa
f a+v>a>Q, is the first such term, then A is said to be periodic of index a and period v. 

Lemma 2. The following statements are equivalent: 
(i) Every sequence otSfaj, —, a^) is periodic. 
(ii) The Lucas sequence ofS(aj, —, ak) is periodic. 

(iii) A is periodic. 

Proof, (i) => (ii) is trivial. 
(ii) =• (iii). let(u) be periodic. Then 

U0A"+P = U0A° and Aa+V = A" . 

Ua+v ~ Ua, 

a+V = u^Ac 

Aa+V = Aa, 

a+v > a > 0. 

and Aa+V 

a+v > a > 0 

Hence, 

That Is, >4 is periodic. 
(iii) => (i). Let 

Then 

and (w) is periodic. 
It is clear that the index of (w) is at most the index of A and that the period of (w) divides the period of A More-

over, the index and period of the Lucas sequence are, respectively, the index and period of A 

Lemma 3. Let the Lucas sequence of Sh], —, ak) be periodic. Then the following statements are equivalent: 
(i) Every sequence of S(aj, —, a^) is purely periodic. 
(ii) The Lucas sequence ofShi, —, a^) is purely periodic. 
(iii) ak is right invertible in /?. 
(iv) a^ is not a right zero divisor in /?. 

Proof, (i) => (ii)and (iii) => (iv) are trivial. 
(ii) => (iii). Let the Lucas sequence (u) e Stai, —, ak) be purely periodic. Then Uv = UQ for v > 0. That is, 

Av = UQUV= L 

If Icjj] = A , then by direct calculation, akCkj = 1, and ak is right invertible. 
(iv) => (i). Since (u) is periodic, then by Lemma 2, every (w) e S(aj, •••, ak) is periodic. Let 

(wo, - , Wk^i)Aa+v = (wo, -", Wk-i)Aa, a+v > a > 0. 
Also since ak is not a right zero divisor, then A is right cancellable. Indeed, suppose BA = 0. Since 

Ak = Iak + Aak-1 + - + Ak~1ai , 

then Bak = 0 and B = 0. Therefore, 

(w0, - , Wk-l)AV = (W0f - , M/£-./j 

and /Wj is purely periodic. 
Reference is made at this point to DeCarli [ 4 ] ; the main result given there follows immediately from Lemma 3. 

2. THE RAWK OF THE LUCAS SEQUENCE 

A result of Wyler [8, Theorem 1], for second-order recurrences over a commutative ring, is now extended. 

Theorem l.Let(u) e $(aj,-,ak)bet\\e Lucas sequence, and suppose ak is not a right zero divisor in /?. Then 
there exists a unique non-negative integer p such that un = 0, —, un+k?-l = O if and only if n is a multiple of p. If 
p= 0, then (u) is not periodic. If p > 0, then (u) is periodic if and only \iup+k-1 is of finite order in the unit group of R. 

Proof First, a matrix characterization of the condition un = O, ••-, un+k-2 = 0\s provided. Specifically, suppose 

un+k-iek = (O, - , O, un+k-i) = ekA
n

f and un+k-iekA' = ekA
nAl = ekA'An 
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f o r /= £7, ~<,k- 1. Thereforelun+k-.iUo= UQA". On the other hand, if WQ = UQA" for some t <ER, then by check-
ing the first row of this matrix, un = 0, —, un+k-2 - 0 and un+k-i = t. Consequently, un = 0, —, un+k-2 = 0 if and 
only if An = U~QXUQ\W some te/?;and in this case t = un+k-j. 

Second, if An' = U'QUUO, then ns not a right zero divisor in R. Indeed, suppose vt = 0 for v e R. Then 

vU0A
n = vtU0 = 0. 

Since ak is not a right zero divisor in R, then as in the proof of Lemma 3, A is right cancellable, VUQ = 0 and v = 0. 
The existence of p is now demonstrated. If un = 0, •••, un+k-2 = 0 implies n = 0, then choose p = 0. In this case, 

by Lemma 3, the Lucas sequence (u) is not periodic. Thus, suppose un = 0, —, un+k-2 ~ 0 f ° r s o m e n > 0, and ^et P 
be the least such n. (If /r = 1, then the condition is satisfied vacuously for every positive n and p = 1.) We show that 
every such/7 is a multiple of p. Indeed, let A? = UQ} SU^with s = up+k-1 • Then 

Apq = Uo1sqU0 and upq = 0, - , upq+k.2 = 0. 

On the other hand, suppose 

An = Uo1tUo, t e R, n = pq + \, 0 < X < p . 

Then 

UQUUO = An = AxApq = AxUo1sqU0, 

where sq is not a right zero divisor. Define 

[djj] = D = U0A
xUo1. 

Then Dsq = It Since d,jsq = 0 for / i=j, then djj = 0 for / ^ j. Also since 
<//7^ = t = d„Sq. 

then */// = f//7 = d, say,/ = /, —, £. That is, D = Id and Ax = U^dilo- Hence, by definition of p, it follows thatX = 
0 and n = pq. That is, the desired p exists and is unique. 

Finally, the last statement of the theorem is demonstrated. Indeed, if sq = 1, then APq = UQUQUQ = I and, by 
Lemma 2, (u) is periodic. Conversely, if (u) is periodic, then it is purely periodic and Av= l,v > 0. Therefore, Av 

= UQ Wo and v= pq for some q. Consequently, 

I = Apq = U-0
1sqU0t lsq = I, 

sq - 1, and 5 = up+k-i is of finite order in the unit group of R. 

The non-negative integer p of Theorem 1 is called the rank of the Lucas sequence associated with (aj, —, a^l 

Corollary 1. Suppose a/< is not a right zero divisor in R. Letp be the rank of the Lucas sequence (u)<ES(aj, 
—, a/d and let (w) e S(a-j, •-, a^l If WQ = 0, then Wp = 0. 

Proof. Let e; = (I, Q, - , O) <= Rk and e^ = (O, ••-, Of 1) e /?*. Since e£ = U0ep where the prime denotes trans-
pose, then UQ ek = e\. Therefore, 

Ape'7 = U'o'up+k-jUQe'j = WQ1 up+^j^ = U"0
1 ekup+k.j = e ' ; * / p +* - / f 

and 
wp = (wp, - / wp+k-i)e'i = (wo, - / wk.i)A

Pc'j = (w0, - , Wk-lfe'iUp-k-1 = ^oup+k-1 • 

Consequently, if M/0 = 0, then w/p= 0. (Compare [3, Theurem 1].) 

3. RELATIONS BETWEEN THE RANK AND PERIOD 

In this section R is a commutative ring with identity 1. Also, (x,y) and [x,y] denote the greatest common divisor 
and least common multiple of the positive integers* and y. 

Theorem 2. Suppose^ is not a zero divisor in R. Let the Lucas sequence (u)^S(aj, •»«, ak) be of rankp > 0. 
Then (u) is periodic if and only if ak is of finite order in the unit group of /?. In this case, let v be the period of (u), 
and let 5 and j3be the orders of (-1)k~1 and Up+k-j, respectively, in the unit group of R. Then 
(i) v=p$=(k,$)[&,p] 
(ii) (k,(3) \sthe order of uj££J/p. 
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Proof. Since Ft is commutative, then 

^ = U-Jup+k-fUo = up+k^l and ((-1)k-1ak)
p = d e t ^ = (up+k.1)

k . 
Therefore, ak is of finite order if and only if Up+k-.f is of finite order. Consequently, by Theorem 1, (u)\$ periodic 
if and only if ak is of finite order. 

Now, suppose (u) is periodic of period v, and let 5 and j3be the orders of (-1)k~1ak and Up+k-i, respectively, in 
the unit group of R Since 

I = Av = <AP)v/p = (up*-M)v/P, 
then §\vlp. On the other hand since 

A<* - lup+^lf - /, 
then v\p$. Therefore, v= pj3. Moreover, the order of 

((-Vk-1ak)
p = (up+k.J)

k 

is 5 /(8,p) = p/(kM Since 8/(b,p) = [8,p]/p, then 

pfi = (k,P)[8,pJ • 

Finally, since $/(k,P) = [8,p]/p, then (k,$) is the order of uj$.fj/p. 

The first part of (i) in Theorem 2 is due to Carmichael [2] . The second part of (i) is an extension of a result of 
Ward [9] for modular integral sequences. (See also Robinson [6].) 

Corollary 2. Let the conditions be as in Theorem 2. Then 
(i) 5 | i ; . 
( i i)0|A:5. 
(iii) P\k if and only if 5 |p . 

This corollary includes several facts that have been previously observed for some special sequences. For example, 
let 0, 1, 1, 2, 3, 5, — be the sequence of Fibonacci numbers reduced modulo m > 2. In this case, k = 2, ax = a2 = 1, 
and 5 - 2 . In particular 2\p. (See for example Wall [8, Theorem 4].) Also, j3|4, and /3|2 if and only if 2|p. In other 
words, ]3|2 if 2\p and j3= 4 if 2 j p . (See Vinson [7, Theorem 3].) 

Corollary 3. Let the conditions be as in Theorem 2, and suppose k is a prime. Then 

(i) v= k[8,p] if u[p%pJ/p M . 

(ii) v = [&,p] if u^k
pJ/p = 1. 

In particular, the relation between the rank and period of the Fibonacci sequence modulo a prime may now be 
given. (See Barner [1, Theorem 2] or Herrick [5, Theorem 3].) 

Corollary 4. Let the Fibonacci sequence reduced modulo an odd prime be of rank p and period v. Then 
(i) v = 4p if 2{p. 

(ii) v = 2p if 2 | p ,2 |p /2 . 
(iii) i/= p if 2 | p , 2 ( p / 2 . 
Proof. Let R be the ring of integers modulo an odd prime; in particular, k = 2 and 5 = 2. If pis odd, then /3= 4 

and, by Theorem 2(i), v- 4p. Thus, suppose p is even and let A be the companion matrix associated w i t h ^ = 7, a2 

= 1. Clearly 
(_1}p/2Ap/2 = mAP/2)AP/2= (M.Ap/2)Ap/2)Ap/2 = M]AP/2)AP = (ad]A

p/2)upH . 

Since the off diagonal elements of Ap/2 are not zero and are the negatives of the off diagonal elements of adj Ap/ * 
then it follows that Up+i = -(-1)P/2. Therefore, since [2,p]/p = 1, 

«;/p-^--/-^/2-(_?,YT; 
P+T P l / if 2\p/2 . 

Consequently, by Corollary 3, v= 2pif 2|p/2 and v = pit 2{p/2. 
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A slight extension of the foregoing argument provides another proof of the main theorem of Wyler [10], In fact, 
Wyler [10, Theorem 4] is valid for every purely periodic second-order Lucas sequence over a commutative ring with 
1 satisfying the following two properties: 1 + 1 is not a zero divisor, and u2 = 1 implies either u = 1 or u = - 1 . 

REFERENCES 

1. K. Barner, "Zur Fibonacci-Folge modulop," Monatsh. Math., 69 (1965), pp. 97-104. 
2. R. D. Carmichael, "On Sequences of Integers Defined by Recurrence Relations," Quart J. Math., 48 (1920),pp. 

343-372. 
3. E. C. Dade, D. W. Robinson, 0. Taussky, and M. Ward, "Divisors of Recurrent Sequences," J. Heine Angew. 

Math., 214/215 (1964), pp. 180-183. 
4. R. J. DeCarli, "Periodicity Over the Ring of Matrices," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 

466-468. 
5. D. L. Herrick, "On the Periodicity of the Terminal Digits in the Fibonacci Sequence," The Fibonacci Quarter-

ly, Vol. 11, No. 5 (Dec. 1973), pp. 535-538. 
6. D. W. Robinson, "The Fibonacci Matrix Modulo m," The Fibonacci Quarterly, Vol. 1, No. 1 (Feb. 1963), pp. 

29-36. 
7. J. Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," 

The Fibonacci Quarterly, Vol. 1, No. 1. (Feb. 1963), pp. 37-45. 
8. D. D. Wall, "Fibonacci Series Modulo m,"Amer. Math. Monthly, 67 (1960), pp. 525-532. 
9. M. Ward, "The Modular Period of a Linear Integral Recurrence," unpublished manuscript dated Europe; July-

October, 1962. 
10. 0. Wyler, "On Second-Order Recurrences," Amer. Math. Monthly, 72(1965), pp. 500-506. 

******* 

LETTER TO THE EDITOR 

GENERALIZED FIBONACCI NUMBERS AND UNIFORM DISTRIBUTION MOD 1 

L KUBPERS 
Mollens, Valais, Switzerland 

In the following I want to comment on a paper by William Webb concerning the distribution of the first digits 
of Fibonacci numbers [1] and to give a partial answer to some questions raised by the author. In fact, restric-
tion to Fibonacci-related sequences makes it possible to obtain a number of results. (Fn) or 1, 1, 2, 3, 5, -
stands for the sequence of Fibonacci numbers. 

Theorem 1. Let k be an integer different from 0. Then the sequence (log Fn ) is uniformly distributed 
mod 1 (abbreviated u.d. mod 1). 

Proof. We apply a classic result of J. G. van der Corput: Let (un) be a sequence of real numbers. If 

Jim^ (un+1-un) 

exists and is irrational, then the sequence (un) is u.d. mod 1. See [2 ] , p. 28. 
Nowsetf/n = logF/ / j t . Then 

un+, - un = log F'n§ - log F1
n

/k = I log F-^± , 

which tends to 

[Continued on page 253.] 


