SUMS OF COMBINATION PRODUCTS

MYRON TEPPER

195 Dogwood, Park Forest, Illinois 60466

INTRODUCTION

The combinations of the integers 1,2,3,4 can be represented by the following diagram:

We will be interested in developing methods for evaluating sums of the form

$$
1.2+1.3+1.4+2.3+2.4+3.4 \quad \text { and } \quad 1.2 .3+1.2 .4+1.3 .4+2.3 .4
$$

We let

$$
\sum_{\substack{x_{1}<\cdots<x_{r} \\ M_{n}}}\left(x_{1} \cdot x_{2} \cdot \cdots \cdot x_{r}\right)
$$

denote the sum of all products of the form $x_{1} \cdot x_{2} \cdot \cdots \cdot x_{r}$, where

$$
x_{1}<x_{2}<\cdots<x_{r} ; \quad x_{1}, x_{2}, \cdots, x_{r} \in\{1,2, \cdots, n\}, \quad \text { and } \quad n \geqslant r \geqslant 2
$$

For example,

$$
\sum_{\substack{x_{1}<x_{2} \\ M_{4}}} x_{1} x_{2}=1.2+1.3+1.4+2.3+2.4+3.4 \quad \text { and } \sum_{\substack{x_{1}<x_{2} \\ M_{3}}} x_{1} x_{2}=1.2+1.3+2.3 .
$$

We define

$$
A_{r}^{n}=\sum_{\substack{x_{1}<\cdots<x_{r} \\ M_{n}}}\left(x_{1} \cdot x_{2} \cdot \cdots \cdot x_{r}\right), \quad r \geqslant 2, \quad \text { and } \quad A_{1}^{n}=\sum_{i=1}^{n} i
$$

In this paper we develop formulas for $A_{2}^{n}, A_{3}^{n}, A_{4}^{n}$. We also provide a general approach for finding A_{r}^{n} when $n \geqslant r \geqslant 5$. A. We now develop a formula for A_{2}^{n}. Consider

$$
\left(\sum_{i=1}^{n} i\right)\left(\sum_{j=1}^{n} j\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} i j=\sum_{i \neq j} i j+\sum_{i=1}^{n} i^{2}
$$

Thus,
(1)

$$
\sum_{i \neq j} i j=\left(\sum_{i=1}^{n} i\right)^{2}-\sum_{i=1}^{n} i^{2} .
$$

Now,

$$
\sum_{i \neq j} i j=2 \sum_{\substack{i<j \\ M_{n}}} i j .
$$

Thus,

$$
2 \sum_{\substack{i<j \\ M_{n}}} i j=\left[\frac{n(n+1)}{2}\right]^{2}-\frac{n(n+1)(2 n+1)}{6} .
$$

Thus, we have
The orem 1. Say $n \geqslant 2$. Then

$$
2 \sum_{\substack{i<j \\ M_{n}}} i j=\left(\sum_{i=1}^{n} i\right)^{2}-\sum_{i=1}^{n} i^{2}=\frac{3\left(n^{4}-n^{2}\right)+2\left(n^{3}-n\right)}{4(3)} .
$$

For example, with $n=3$,

$$
2(1 \cdot 2+1 \cdot 3+2 \cdot 3)=\frac{3\left(3^{4}-3^{2}\right)+2\left(3^{3}-3\right)}{4(3)} .
$$

We could also find

$$
\sum_{\substack{i<i \\ M_{n}}} i j
$$

by using the method of undetermined coefficients. We begin by assuming that

$$
\sum_{\substack{x_{1}<\cdots<x_{r} \\ M_{n}}}\left(x_{1} \cdot \cdots \cdot x_{r}\right)
$$

is a polynomial of degree $2 r$ in n (we assume that the coefficient of n^{0} is zero):

$$
2 \sum_{\substack{i<j \\ M_{n}}} i j=A n^{4}+B n^{3}+C n^{2}+D n .
$$

Now,

$$
\begin{gathered}
\sum_{\substack{i<j \\
M_{2}}} i j=1 \cdot 2=2, \quad \sum_{\substack{i<j \\
M_{3}}} i j=1 \cdot 2+1 \cdot 3+2 \cdot 3=11, \\
\sum_{\substack{i<j \\
M_{4}}} i j=1 \cdot 2+1 \cdot 3+1 \cdot 4+2 \cdot 3+2 \cdot 4+3 \cdot 4=35, \\
\sum_{\substack{i<j \\
M_{s}}} i j=1 \cdot 2+1 \cdot 3+1 \cdot 4+1 \cdot 5+2 \cdot 3+2 \cdot 4+2 \cdot 5+3 \cdot 4+3 \cdot 5+4 \cdot 5=85 .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& 2(2)=A \cdot 2^{4}+B \cdot 2^{3}+C \cdot 2^{2}+D \cdot 2, \quad 2(11)=A \cdot 3^{4}+B \cdot 3^{3}+C \cdot 3^{2}+D \cdot 3, \\
& 2(35)=A \cdot 4^{4}+B \cdot 4^{3}+C \cdot 4^{2}+D \cdot 4, \quad 2(85)=A \cdot 5^{4}+B \cdot 5^{3}+C \cdot 5^{2}+D \cdot 5 .
\end{aligned}
$$

Solving this system for A, B, C, D should provide the required answer. Generalizing Theorem 1 , we have
The orem 2. Say $a_{i}, a_{j} \in\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and $n \geqslant 2$. Then

$$
2 \sum_{i<j} a_{i} a_{j}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}-\sum_{i=1}^{n} a_{i}^{2}
$$

For example, letting $a_{i}=i^{2}$,

$$
2 \sum_{i<j}(i j)^{2}=\left(\sum_{i=1}^{n} i^{2}\right)^{2}-\sum_{i=1}^{n} i^{4}
$$

Similarly, letting $a_{i}=1 / i$,

$$
2 \sum_{i<j} \frac{1}{i j}=\left(\sum_{i=1}^{n} \frac{1}{i}\right)^{2}-\sum_{i=1}^{n} \frac{1}{i^{2}} .
$$

For example,

$$
2\left(\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 3}\right)=\left(1+\frac{1}{2}+\frac{1}{3}\right)^{2}-\left(1+\frac{1}{4}+\frac{1}{9}\right)
$$

Now, say $x^{3}+B x^{2}+C x+D=0$. Then, by Theorem 2, letting a_{j} equal the $i^{\text {th }}$ root of the above equation,

$$
2 C=B^{2}-\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) .
$$

Say $B=C=0$. Then $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=0$. Thus, we have
Theorem 3. Say $r_{1}, r_{2}, \cdots, r_{n}$ are the roots of $x^{n}=-D$, and $n \geqslant 3$. Then $r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}=0$.
B. We now develop a formula for A_{3}^{n}. Consider:

$$
\left(\sum_{i=1}^{n} i\right)\left(\sum_{i=1}^{n} j\right)\left(\sum_{k=1}^{n} k\right)=\left(\sum_{i=1}^{n} i\right)^{3}=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k .
$$

We consider

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k
$$

to be a sum of products having three factors. Hence,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k=\sum_{\substack{\text { all factors } \\ \text { equal }}} i j k+\sum_{\substack{\text { all factors } \\ \text { different }}} i j k+\sum_{\substack{\text { two factors } \\ \text { equal }}} i j k .
$$

Now, if the product $1 \cdot 2 \cdot 4$ appears in the sum

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k,
$$

the following products also appear:

$$
1 \cdot 4 \cdot 2, \quad 2 \cdot 1 \cdot 4, \quad 2 \cdot 4 \cdot 1, \quad 4 \cdot 1 \cdot 2, \quad 4 \cdot 2 \cdot 1 .
$$

These may be considered as rearrangements of $1 \cdot 2 \cdot 4$. We note that the number of permutations of three distinct objects taken three at a time is six.
If the product $1 \cdot 1 \cdot 4$ appears in the sum

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k
$$

the following products also appear:

$$
1: 4 \cdot 1, \quad 4 \cdot 1 \cdot 1 .
$$

We note that the number of permutations of three objects, two of which are of one kind, is three. Thus, $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} i j k=\sum_{i=1}^{n} i^{3}+6 \sum_{\substack{i<j<k \\ M_{n}}} i j k+\left(3 \sum_{i=1}^{n} 1^{2} i-3 \cdot 1^{3}\right)+\left(3 \sum_{i=1}^{n} 2^{2} i-3 \cdot 2^{3}\right)$ $+\cdots+\left(3 \sum_{i=1}^{n} n^{2} i-3 n^{3}\right)=\sum_{i=1}^{n} i^{3}+6 \sum_{\substack{i<j<k \\ M_{n}}} i j k+3 \sum_{i=1}^{n} i\left(1^{2}+2^{2}+\cdots+n^{2}\right)-3\left(1^{3}+2^{3}+\cdots+n^{3}\right)$
$=\sum_{i=1}^{n} i^{3}+6 \sum_{\substack{i<j<k \\ M_{n}}} i j k+3\left(\sum_{i=1}^{n} i\right)\left(\sum_{i=1}^{n} i^{2}\right)-3 \sum_{i=1}^{n} i^{3}$.
Thus, we have
Theorem 4. Say $n \geqslant 3$. Then

$$
6 \sum_{\substack{i<j<k \\ M_{n}}} i j k=\left(\sum_{i=1}^{n} i\right)^{3}+2 \sum_{i=1}^{n} i^{3}-3\left(\sum_{i=1}^{n} i^{2}\right)\left(\sum_{i=1}^{n} i\right)=\frac{n^{6}}{8}-\frac{n^{5}}{8}-\frac{3 n^{4}}{8}+\frac{n^{3}}{8}+\frac{n^{2}}{4} .
$$

For example, with $n=4$,

$$
6(1 \cdot 2 \cdot 3+1 \cdot 2 \cdot 4+1 \cdot 3 \cdot 4+2 \cdot 3 \cdot 4)=\left(\sum_{i=1}^{4} i\right)^{3}+2 \sum_{i=1}^{4} i^{3}-\left(\sum_{i=1}^{4} i^{2}\right)\left(\sum_{i=1}^{4} i\right) .
$$

We now give an alternate derivation of the formula for $\sum_{\substack{i<j<k \\ M_{n}}} i j k$
Consider: $3(1 \cdot 2)+4(1 \cdot 2+1 \cdot 3+2 \cdot 3)+5(1 \cdot 2+1 \cdot 3+1 \cdot 4+2 \cdot 3+2 \cdot 4+3 \cdot 4)=(1 \cdot 2 \cdot 3)+(1 \cdot 2 \cdot 4+1 \cdot 3 \cdot 4+2 \cdot 3 \cdot 4)$ $+(1 \cdot 2 \cdot 5+1 \cdot 3 \cdot 5+1 \cdot 4 \cdot 5+2 \cdot 3 \cdot 5+2 \cdot 4 \cdot 5+3 \cdot 4 \cdot 5)$. This suggests that

$$
\sum_{\substack{i<i<k \\ M_{n}}} i j k=3 \sum_{\substack{i<j \\ M_{2}}} i j+4 \sum_{\substack{i<j \\ M_{3}}} i j+\cdots+n \sum_{\substack{i<j \\ M_{n-1}}} i j
$$

Thus, we conjecture,

$$
\begin{equation*}
\sum_{\substack{i<j<k \\ M_{n}}} i j k=\sum_{w=2}^{n-1}(w+1) \sum_{\substack{i<j \\ M_{w}}} i j \tag{2}
\end{equation*}
$$

Thus, by Theorem 1, we conjecture
and we have

$$
\sum_{\substack{i<j<k \\ M_{n}}} i j k=\sum_{w=2}^{n-1}(w+1)\left[\frac{3\left(w^{4}-w^{2}\right)+2\left(w^{3}-w\right)}{24}\right]
$$

Theorem 5. Say $n \geqslant 3$. Then

$$
24 \sum_{\substack{i<j<k \\ M_{n}}} i j k=\sum_{i=1}^{n}\left(3 i^{5}+5 i^{4}-i^{3}-5 i^{2}-2 i\right)-3 n^{5}-5 n^{4}+n^{3}+5 n^{2}+2 n
$$

We can prove Theorem 5 by using Theorem 4 and the following formulas:

$$
\begin{aligned}
& 2 \sum_{i=1}^{n} i=n^{2}+n, \quad 3 \sum_{i=1}^{n} i^{2}=n^{3}+\frac{3 n^{2}}{2}+\frac{1 n}{2}, \quad 4 \sum_{i=1}^{n} i^{3}=n^{4}+2 n^{3}+n^{2} \\
& 5 \sum_{i=1}^{n} i^{4}=n^{5}+\frac{5 n^{4}}{2}+\frac{5 n^{3}}{3}-\frac{1 n}{6}, \quad 6 \sum_{i=1}^{n} i^{5}=n^{6}+3 n^{5}+\frac{5 n^{4}}{2}-\frac{1 n^{2}}{2}
\end{aligned}
$$

C. We now develop a formula for A_{4}^{n}. Consider:

$$
4(1 \cdot 2 \cdot 3)+5(1 \cdot 2 \cdot 3+1 \cdot 2 \cdot 4+1 \cdot 3 \cdot 4+2 \cdot 3 \cdot 4)=(1 \cdot 2 \cdot 3 \cdot 4)+(1 \cdot 2 \cdot 3 \cdot 5+1 \cdot 2 \cdot 4 \cdot 5+1 \cdot 3 \cdot 4 \cdot 5+2 \cdot 3 \cdot 4 \cdot 5)
$$

This suggests that

$$
\sum_{\substack{i<j<k<l \\ M_{n}}} i j k \ell=4 \sum_{\substack{i<j<k \\ M_{3}}} i j k+5 \sum_{\substack{i<j<k \\ M_{4}}} i j k+\cdots+n \sum_{\substack{i<j<k \\ M_{n-1}}} i j k .
$$

Thus, we conjecture,

$$
\begin{equation*}
\sum_{\substack{i<j<k<l \\ M_{n}}} i j k \ell=\sum_{w=3}^{n-1}(w+1) \sum_{\substack{i<j<k \\ M_{w}}} i j k \tag{3}
\end{equation*}
$$

Thus, by Theorem 4, we conjecture,

$$
\sum_{\substack{i<j<k<\ell \\ M_{n}}} i j k \ell=\sum_{w=3}^{n-1} \frac{(w+1)}{24}\left(\frac{w^{6}}{2}-\frac{w^{5}}{2}-\frac{3 w^{4}}{2}+\frac{w^{3}}{2}+w^{2}\right)
$$

and we have
Conjecture 1. Say $n \geqslant 4$. Then

$$
24 \sum_{\substack{i<j<k<\ell \\ M_{n}}} i j k \ell=\sum_{i=1}^{n}\left(\frac{1 i^{7}}{2}-2 i^{5}-i^{4}+\frac{3 i^{3}}{2}+i^{2}\right)-\frac{n^{7}}{2}+2 n^{5}+n^{4}-\frac{3 n^{3}}{2}-n^{2}
$$

Comparing (2) and (3) we have
Conjecture 2. Say $n \geqslant r \geqslant 3$. Then

$$
\sum_{\substack{x_{1}<\cdots<x_{r} \\ M_{n}}} \prod_{i=1}^{r} x_{i}=\sum_{w=r-1}^{n-1}(w+1) \sum_{\substack{x_{1}<\cdots<x_{r-1} \\ M_{w}}} \prod_{i=1}^{r-1} x_{i} .
$$

Thus, we have
Conjecture 3. Conjecture 2 and Theorem 1 provide a recursive method for determining $A_{3}^{n}, A_{4}^{n}, A_{5}^{n}, \cdots$.
D. Theorem 6. Say $n \geqslant 2$. Then

$$
(n-1)!=n^{n-1}+\sum_{i=1}^{n-1}(-1)^{i} A_{i}^{n-1} n^{n-(i+1)}
$$

Proof.
$(n-1)!=(n-1)(n-2) \cdots[n-(n-1)]=n^{n-1}+(-1)^{1} A_{1}^{n-1} n^{n-2}+(-1)^{2} A_{2}^{n-1} n^{n-3}$

$$
+(-1)^{3} A_{3}^{n-1} n^{n-4}+\cdots+(-1)^{n-1} A_{n-1}^{n-1} n{ }^{n-n} .
$$

E. Theorem 7. The A_{i}^{n} can be solved for by Cramer's rule. Also,

$$
\sum_{i=1}^{n} A_{i}^{n}=(n+1)!-1
$$

Proof. Let $f(x)=(x+1)(x+2) \cdots(x+n)=(x+n)!/ x!$. Then $f(x)=x^{n}+A_{1}^{n} x^{n-1}+A_{2}^{n} x^{n-2}+\cdots+A_{n-1}^{n} x+A_{n}^{n}$. Thus,

$$
\begin{aligned}
& A_{1}^{n} 1^{n-1}+A_{2}^{n} 1^{n-2}+\cdots+A_{n-1}^{n} 1^{1}+A_{n}^{n}=f(1)-1^{n} \\
& A_{1}^{n} 2^{n-1}+A_{2}^{n} 2^{n-2}+\cdots+A_{n-1}^{n} 2^{1}+A_{n}^{n}=f(2)-2^{n} \\
& \vdots \\
& A_{1}^{n} n^{n-1}+A_{2}^{n} n^{n-2}+\cdots+A_{n-1}^{n} n^{1}+A_{n}^{n}=f(n)-n^{n}
\end{aligned}
$$

where the A_{i}^{n} can be solved for by Cramer's rule.
F. Theorem 8. Say $n \geqslant r \geqslant 1$ and $f(x)=(x+n)!/ x!$. Then

$$
A_{r}^{n}=\frac{f^{[n-r]}(0)}{(n-r)!}
$$

where $f^{[n-r]}(0)$ denotes the $n-r$ derivative avaluated at zero.
Proof. Say $f(x)=(x+1)(x+2) \cdots(x+n)=(x+n)!/ x!$. Then $f(x)=x^{n}+A_{1}^{n} x^{n-1}+\cdots+A_{n-1}^{n} x+A_{n}^{n}$. Now $f(x)$ is a polynomial of degree n. Thus, by Taylor's formula,

$$
f(x)=f(0)+f^{[1]}(0) x+\frac{f^{[2]}(0) x^{2}}{2!}+\ldots+\frac{f^{[n]}(0) x^{n}}{n!}
$$

Thus, comparing the coefficients of the above two equations, the theorem is proved.
G. A Curiosity. Let

$$
\begin{align*}
T_{Q}= & -\sum_{x_{1}=1}^{Q} x_{1}+\sum_{x_{1}=2}^{Q} x_{1} \sum_{x_{2}=1}^{x_{1}-1} x_{2}-\sum_{x_{1}=3}^{Q} x_{1} \sum_{x_{2}=2}^{x_{1}-1} x_{2} \sum_{x_{3}=1}^{x_{2}-1} x_{3} \tag{4}\\
& +\sum_{x_{1}=4}^{Q} x_{1} \sum_{x_{2}=3}^{x_{1}-1} x_{2} \sum_{x_{3}=2}^{x_{2}-1} x_{3} \sum_{x_{4}=1}^{x_{3}-1} x_{4}-\cdots+w(Q, Q)
\end{align*}
$$

where

$$
\begin{gathered}
w(v, Q)=(-1)^{v} \sum_{x_{1}=v}^{Q} x_{1}\left[\sum_{x_{2}=v-1}^{x_{1}-1} x_{2} \sum_{x_{3}=v-2}^{x_{2}-1} x_{3} \cdots \sum_{x_{v}=1}^{x_{v-1}-1} x_{v}\right] . \\
\therefore T_{Q}=-\sum_{x_{1}=1}^{Q} x_{1}+\sum_{v=2}^{Q} w(v, Q) .
\end{gathered}
$$

Thus,
(5)
(6)

$$
T_{1}=-[1]
$$

(7) $T_{3}=-[1+2+3]+[2(1)+3(1+2)]-\{3[2(1)]\}=-[1+2+3]+[(2 \cdot 1)+(3 \cdot 1)+(3 \cdot 2)]-[(3 \cdot 2 \cdot 1)]$.

This suggests

Conjecture 4.

$$
\begin{gathered}
A_{2}^{n}=\sum_{x_{1}=2}^{n} x_{1} \sum_{x_{2}=1}^{x_{1}-1} x_{2}, A_{3}^{n}=\sum_{x_{1}=3}^{n} x_{1} \sum_{x_{2}=2}^{x_{1}-1} x_{2} \sum_{x_{3}=1}^{x_{2}-1} x_{3} \\
\cdots A_{n-1}^{n}=\sum_{x_{1}=n-1}^{n} x_{1} \sum_{x_{2}=n-2}^{x_{1}-1} x_{2} \sum_{x_{3}=n-3}^{x_{2}-1} x_{3} \cdots \sum_{x_{n-1=1}}^{x_{n-1}^{-1}} x_{n-1}
\end{gathered}
$$

and

Conjecture 5.

$$
T_{n}=\sum_{i=1}^{n}(-1)^{i} A_{i}^{n}
$$

We note that from Conjecture 4,

$$
\begin{aligned}
A_{2}^{n} & \stackrel{?}{=} \sum_{x_{1}=2}^{n} x_{1} \sum_{x_{2}=1}^{x_{1}-1} x_{2}=\sum_{i=2}^{n} \sum_{j=1}^{i-1} i j=\sum_{i=2}^{n} \frac{i(i-1) i}{2}=\frac{1}{2} \sum_{i=2}^{n}\left(i^{3}-i^{2}\right) \\
& =\frac{1}{2}\left\{\left[\frac{n(n+1)}{2}\right]^{2}-\frac{n(n+1)(2 n+1)}{6}\right\}
\end{aligned}
$$

which agrees with Theorem 1.
Similarly,

$$
A_{3}^{n} \stackrel{?}{=} \sum_{x_{1}=3}^{n} x_{1} \sum_{x_{2}=2}^{x_{1}-1} x_{2} \sum_{x_{3}=1}^{x_{2}-1} x_{3}=\sum_{i=3}^{n} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} i j k
$$

We note that $T_{3}=T_{2}-3+3[1+2]-3[2(1)]=T_{2}-3-3 T_{2}$ and $T_{4}=T_{3}-4+4[1+2+3]-4[2(1)+3(1+2)]$ $+4\{3[2(1)]\}=T_{3}-4-4 T_{3}$. Thus, $T_{3}=-2 T_{2}-3$ and $T_{4}=-3 T_{3}-4$. This suggests

Theorem 9. Say $Q \geqslant 1$. Then

(8)

$$
T_{Q}=-(Q-1) T_{Q-1}-Q
$$

We leave the proof to the reader.
We might hope that the T_{Q} represent a new species of number. Let's see; i.e., from (5), (6), (7) we have

$$
T_{1}=-1, \quad T_{2}=-3+2=-1, \quad T_{3}=-6+11-6=-1
$$

This suggests
Theorem 10. Say $Q \geqslant 1$. Then $T_{Q}=-1$.
Proof (induction). By (5) we know that $T_{1}=-1$. Say k is a fixed integer greater than or equal to two and $T_{k-1}=-1$. Then, by (8), $T_{k}=-1$ and the theorem is proved.
Hence, from Conjecture 5 and the above theorem, we have

Conjecture 6.

$$
\sum_{i=1}^{n}(-1)^{i} A_{i}^{n}=-1
$$

