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1. INTRODUCTION 

The Fibonacci numbers, the Fibonacci polynomials, and the generalized Fibonacci polynomials, these latter 
defined by 

Unfcy) = xun-.i(x,y) + yun-.2(x,y); u0(x,y) = 0, ui(x,y) = /, 
all have the following divisibility property: 

(1) If m\n, then um\un . 

In their recent paper [3 ] , Hoggatt and Long prove (1) and more: 

(2) If/77 > / a n d / ? > /, then (um,un) = u(m/fl) r 

Further, if p is a prime, then up(x,y) is irreducible over the rational number field, a result originating with 
Webb and Parberry [5 ] . Similar results for Lucas polynomials and generalized Lucas polynomials are proved by 
Bergum and Hoggatt [2 ] . 

In this present paper, we consider divisibility properties of certain polynomials which include the generalized 
Fibonacci polynomials and a modification of the generalized Lucas polynomials as special cases. 

Letx, y, z be indeterminants and let 

(3) fn = (x + ylfn^-xyfn-2; fo= 0, f1 = 1. 

Define c0 = 0, zjf) = f = fx, and 
(fyn-l(f)+zzn-2(f) for even n 

an(x,y,z) = zn(f) = | Hn_l{f)+zin_2{f) + 2zln-nn f Q r o d d n> 

where f' is replaced by f; for/ > 0 after the multiplications involving fare carried out Since 

fn{x,y) = (xn-yn)/(x-y) 

for n > I it is easy to write out the first few sin(x,y,z) as follows: 

£0 = 0 = f0 

z, = (x -y)/(x-y) = fx 

c2 - (x2 -y2)(x-y) = f2 

e3 = fx3 - y3 + 3z(x - y)]/(x -y) = f3 + 3zfx 

e4 = [x4 - y4 + 4z(x2 - y2)]/(x - y) = f4 +4zf7 

c5 = fs +5zf3 + 5z2f, 
fi6 = f6+6zf4+9z2f2 

c7 = fn +7zf5 + 14z2f3 +7z3fx 

28 = f8+8zf6+20z2f4 + 16z3f2 

c9 = f9 +9zfn +27z2fs +30z3f3 + 9z4f, 

In general, 

(4) 
r / 

n(x,v,z) - £ [ ( " + / " ' ) - ("7-_~') ] 'lf«~*- where w = \ %: 
___2 . ____ , I ____ 
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2)/2 for even n 
1)/2 for odd n 
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Several special cases of the polynomials SLn(x,y,z) are as follows: 

Fibonacci numbers zn(a,$,0); a +Q = 7, a/3 = - 7 
Fibonacci polynomials sin(a,b,0); a + b = x, ab = -1 
generalized Fibonacci polynomials 9.n(A,B,0); A+B = x, AB = -y 
modified Lucas numbers v.n(1,0,1) 
modified Lucas polynomials zn(x,0,1) 
generalized modified Lucas polynomials %n(x,Ofz) 

For comparison with (unmodified) sequences of generalized Lucas polynomials Ln(x,z), Lucas polynomials 
Ln(x,l), and Lucas numbers Ln(1,1), we have, for/7 = 0, 1, —, 

Z.„(1,1): 2, 1,3,4,7, 11, 18,29,47,76, 123, 199 ,322 ,521 , - , 
c„ (1,0,1): 0, 1,1,4,5, 11, 16,29,45,76,121, 199,320,521, . . ; 

Ln(x,z) = xLn„](x,z)+zLn-2(x,z), LQ(X,Z) = 2, Li(x,z) = x; 
i Ln{x,z) for odd n 

<5) xzn(x,0,z) = \ Ln(x,z)-2zn/2 for even n; 

(6) *n(x,y,z) = ^ ^ - ^ ^ > . 
x - y 

In Section 2 we prove that the divisibilities in (1) hold for the polynomials sin(x,y,z). In Section 3 we prove 
that consecutive terms of the sequence sin(x,yfz) are relatively prime. In Section 4 we prove the same for se-
quences of the form zmn/Q.m, where m is fixed. In Section 5 we prove that (2) holds for the sequence SLn(x,y,z). 
In Section 6 we consider the irreducibillity of some of the sin(x,y,z). 

2. A MULTISECTION THEOREM 

Lemma L The sequence &n(x,y,z), for/7 - 7, 2, •••, is generated by the function 

G(x,y,z,t)= 1+zt2 

(1 -xt-zt2)(l -yt-zt2) 

Proof. Let 
x(t) = 1-xt-zt2 = (1-txt)(l-t2t) and y(t) = 1- yt-zt2 = (1 - t3t)(J - t4t). 

It is easy to check that 

and it is well known [1] that -x'(t)/x(t) generates a sequence of sums of powers of roots ofx(t). Explicitly, 

(7) (x-y)G(x,y,zft) = { s Jx) + s2(x)t + - - [s Jy) + sjyh + - ] \ , 

where snfx) = t" + t% is the /7f/7 (unmodified) generalized Lucas polynomial Ln(x,z). Thus, the sequencesn(x) 
- sn(y) generated in (7) is Ln(x,z) - Ln(y,z). By (6), the proof is finished. 

Theorem 1. \im\n, where m > 7 and /7 > 1, then sim(x,y,z)\sin(x,y,zl 

Proof. (The multisection procedure used here is explained in Chapter 4 of Riordan [4].)The m - 7, m 
section of the series in (7) is 

sm (x)tm-1 + s2m(x)t2m-1 + --[sm(y)tm-1 +s2m(y)t2m-1 + •••], 

which we write as 
fr- y)(*mtm-1 + *2mt2m-1 +"'). 

Again as in [1 ] , we know that sm (x) + $2m Mt + ••• = -X'(t)/X(t), where 
X(t) = (1 - tftHl - t?t) = 1 -sm (x)t + (~z)mt2, 

and similarly, 
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sm (y>+ S2m (yh + - - YW YU), 
where 

Y(t) = (1 -t%t)(1 -t%t) = 1-sm(y)t + (-z)mt2. 
Thus, 

Write 1/XY KH0 + H1t + H2t
2 + - . Then 

*m +*2mt + - - ~ ^ r - IXY' - X'Y)(H0 + H1t + H2t
2 + - ) 

= zm[l-(-z)mt2](H0 + H1t + H2t
2 + .->). 

Therefore, if n = km, then sin = sim [H^-i - (-z)m Hk-3]. 

3. CONSECUTIVE RELATIVELY PRIME POLYNOMIALS 

The m - 1, m section of xG(x,0,z,t) = LX + L2t + L3t
2 + — readily provides a well known (e.g., [4]) recur-

rence relation 
Lnm = LmLfn-Dm- (-z)mL(n-2)m 

for subsequences of (unmodified) generalized Lucas polynomials. Substituting for the L's according to (5), we 
readily obtain the following lemma for modified generalized Lucas polynomials. 

Lemma 2. Let zn = Qn (x,Q,z) for n > 0. Then for n > 2, 

I zm(xz(n-l)m + 2z(n~]f)m/2).+ zm^(n-2)m forodd/7? and odd/? 
V-nm = I x9.mSl(n_1)m +Zm%(n-2)m f° r °dd m a n c ' e v e n n '' 

*nm = (xlm+2zm/2h(n„1}m-zm9.(n-2)m+2z(n-1}m/29.m for even m. 

Theorem 2. Lete^ = SLn(x,0,z) for/7 > 0. Then for/? > 1, 

n_1 i -x(zn+ 2z(n~1}/2})zn + (xzn-i +4z(n'1)/2-fcn+i forodd/? 
xz | (xzn+4zn~2hn-xzn-i%n+i for even/7. 

Proof. The proposition is obviously valid for/? = /. Suppose its validity for arbitrary odd/7. Then for any 
even n, 

xz"'2 = (xin-2 + 4z {n'2)/2hn - x(zn-1 + 2z in'2)/2hn. 1 

xz"'1 = (xzzn„2+4zn/2hn-x(zsin_1+2zn-2hn_1 

= (xzn-x\-1+4zn/2)zn-xzn-1(zzn-1+2zn/2) 

= (xsin + 4zn/2)Qn - x V 1 (x*n + ̂ n- 1 + 2zn/2) 

= (xin+4zn/2hn-xzn-1zn+1 . 

Now suppose the proposition valid for arbitrary even n. Then for any odd n, 

xzn~2 = -xSLn„2*n + (xin-l+4z{n~2)/2K-l 

xz"~1 = -xzzn-2u-n + (xzn-1 + 4z ("~ 1)/2)z^ / 
= -x(z„- xzn. 1 - 2z ("~ 1)/2hn + frs„-1 + 4z ("~ 1)/2)zzn„ 1 

= -x(zn -2z("-1)/2hn + (xin-1+4z("-1)/2)zzn-1 + x2wn-i 

= -x(*n +2z("-1)/2hn + fre„.y +4z("-1)/2)zzn-1 +x\9.n„1 + 4xzi"-1)/2hn 

= -x{iin + 2z("- 1)/2hn + (xsin_ 1 + 4z ("~ 1}/2)(zsin. 1+xsin) 

= -x(zn+2z("-1)/2hn + (xzn-1+4z("-1)/2)zn+1 . 

Corollary 2. Let 2,7 =Qn(x,0,zifor n > 0. Then (zn, zn+1>= 1 for n > l 
Proof. Theorem 2 shows that the only possible divisors of both zn and 9.n+i are of the isxmx'zJ where 

0 < / < 1 and 0 < / < / 7 - 1. Equation (4) shows that/= 0. Reading* for f i n (4), we see that* divides zn (x,Q,z) 
only when n is even. Sincex'z divides consecutive e's, we have / = 0. 
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Lemma 3. Letc^ = zn(x,y,0) = fn for/? > 0. Then (zn, sin+1)= 7 for/7 > 7. 

Proof. Clearly (fiJ2> = fofe) = ^ Suppose for arbitrary n > 2 that (fn_2, fn-i)
 = 7- tfd(x,y) divides 

both fn-j and fn then by (3), d(x,y) divides xyfn-2- Thus d(x,y) divides fn-2, since (xy,fn-2) = ?• But the 
only divisor of both fn^2 and ^ . ; is 1. Therefore ATA;/^ = /. 

Theorem 3. Letc^ = o.n(x,y,z) for/7 > 0. Then fe^, zn+i)= 7 for/7 > 7. 

Proof. Suppose d(x,y,z) divides both zn(x,y,z) and zn+i(x,y,z). Then d(x,y,0) divides both Q.n(x,y,0) and 
$.n+l(x,y,0). By Lemma 3, d(xfy,z) = 7 + ze(x,y,z) for some e(x,y,z). Since 1 +ze(x,y,z} divides sin(xfytz), 
we have 

zn(x,y,z) = q(x,y,z)+ze(x,y,z)q(x,y,z) 

for some q(x,y,z). Nowz does not divide q(x,y,z), sincez does not divide s.n(x,y,z). Therefore the term X in 
9.n(x,y,z) occurs in q(x,y,z), Consequently, unless e(x,y,z) is the zero polynomial, some nonzero multiple of 
zx occurs in the polynomial ze(x,y,z)q(xfy,z). But Q.n(x,y,z) has no such term. Therefore e(x,y,z) is the zero 
polynomial, so that d(x,y,z)= 1. 

4. SUBSEQUENCES OFe,, 

In this section we consider subsequences of the form zm, ^2m^ Q3m^ '" > where m > 1. Since each term is 
divisible by the first term, let us divide all terms by the first, and let X ^ „ =Q-nm/%m for/7 > 0. Then by Theo-
rem 1, for/7? > 7and/r> 7, \m,k\^m,n whenever kI/7. Do the Xsequences also inherit from the e sequence the 
property that consecutive terms are relatively prime? 

Lemma 4a. Let X„ = \m,n(x,0,z) for/7 > A Then for/7 > 7, 

Proof By Lemma 2, 

Thus, for odd/77, 

j X2X/7-7 for odd/7? 
* c f a - / M = I a 2 - 4zm/2)\n- 7 for even //?. 

J xzm for odd/7? 
C2/TI = { 2 M m/2 

\ x£m +4z 2m for even m. 

9.2m ^ \ 
x^(n-1)m = -J- Z(n-1)m = *2*n-1 • 

Q 

,m/2n 

For even m, 

Lemma 4h. LetX„ = \m/n(x,0,z)iorn > 0. Then for odd/77 and/7 >2, 

I X 2 X „ - / +z,7?XA7_2 + 2z (n~1)m/2 for odd n 
X^ = < 

1X2X^-7 +zm\n-2 foreven/7; 
and for even /77, 

X„ = a 2 - ^ m / 2 A „ - 7 - z m A n - 2 * 2z(n'1,m/2 , 
with X# = 0and X7 = 7. 

Proof In Lemma 2, divide both sides of the three recurrence relations by Qm, recalling that \/< = Q-km/^m 
for/r = /7, n- l,n-2. Now replace x e ^ _ i ) m by \2^n-1 for odd /77, and replace A-em by \ 2 - 4zm/ for even 
m. 

Theorem 4a. LetX„ = \mn(x,Ofz) for/7 > 0. Then for odd/?7 and/? > 7, 

x 7r/i-/;m _ i-^2^n^2z(n-1)m/2)\n + (\2\n-1+4z<n-1}m/2)\n+1 for odd/7 

1 (X2^n+4znm/2)\n-X2Xn'An+i for even/7. 
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Proof. Referring to the proof of Theorem 1, we know that for odd m, 

1+zmt2 

so that 
\ 1 + \ 2 t + - = G[sm(x),sm(y),zm,t] . 

§\nwsm(y) = Ln(y,z), as in theproof of Lemma 1, Eqs. (5) and (6) show \\\%\sm(y)= 0for all odd m. Further, 
sm(x) = x9.m, which by Lemma 4a equals Q.2m/y.m, which isX2- Therefore, 

\ l + \ 2 t + - = G(\2,0,zm
ft) = i1(X2,Ofz

m)+si2(X2,Q.zmH + - , 

by Lemma 1. Thus Theorem 2 applies with x and z replaced by \ 2 and zm, respectively. The result is exactly as 
stated above. 

Theorem 4b. Let Xn = \mrn(xfQ,z) for n > 0. Then for even m and n > 7, 

z (Kn-2z )\n+Kn-.i\n+7 . 

Proof. The proposition is clearly valid for n = 1. For arbitrary n > 1, suppose that 
z(n-2,m _ _ f V r ^ « - « j V ) + V A . 

Then 
z(n-1)m = _f_Xn+i + (X2_2zm/2j\n] X„_, - [\n - f\2- 2zm/2)\n-1 - 2z(n-1)m/2l \n 

by Lemma 4b 
= ~(Xn-2z(n'1)m/2)Xn + Xn.1Xn+1 . 

Corollary 4. \-v\\n = \mn(x,0,z) for/7 > 0. Then (Xn, Xn+?) = 7 for all positive integers m and n. 

Proof For odd m, Theorem 4a shows that the only possible divisors of both Xn and Xn+i are of the form 
X'2z

J\ where 0 < / < / and 0 < / < (n - Dm., As in the proof of Theorem 4a, \n = 9.n (\2, 0, zm), so that (4) 
gives (for odd m only), 

w 

Xn ~ IJ [[ J J ~ [ i - 2 ) \ z fn-2i' w n e r e w ~ \ ( n - 7j/?forodd/7, 
i=0 

and fpx,0) = ff<(X2,0) = X2~
1 for k > I Thus X2 divides \ n only when n is even. Since X2 divides consecu-

tive X's, we have/ = 0. 
Now for any m, Theorem 4b and the argument just given show that the only possible divisors of both \ n and 

Xn+1 are of the form zy with 0<j <(n - Dm. Sfzy divides X^ then zy divides e ^ = ^m^n- Thus/ = 0, by (4). 

Lemma 5. Lz\Xn = Xmfn(x,y,0) for/? > 0. Then (Xn, \n+i)= 1 for/7 > 1. 

Proof. Since z = 0, we have \ n = fnm/fm = fn(x
m,yml Now (3) is used to complete the proof, just as in 

the proof of Lemma 3. 

Theorem 5. Let X,, = Xmfn (xfy,z) for n > 0. Then (Xn, Xn+1) = 1 for n > 1. 

Proof The method of proof is exactly as for Theorem 3. Here the exponent of x to be considered is m<n~ 
rather than n~1. 

Theorem 6. Let/77 and/7 be odd. LetX„ = Xm n(x,0,z)iorn > 0. Then for n > 1, Xn=nz(n~1)m/2 mod 
X 2 . 

Proof. By Lemma 4b, 
X„ = (zmXn-2 + 2z(n-1)m/2) modX2 for odd n. 

Repeated application of this congruence gives 

X„ - 2z(n-1)m/2+zm\n-2 - 2z(n-1)m/2+zm(zmXn-4 + 2z(n-3jm/2) = 4z
(n~1)m/2 + z2mXn.4 - -

^2kz(n-1)m/2 + zkmXn-2k for k= it2,---,n-jl m 



374 DIVISIBILITY PROPERTIES OF RECURRENT SEQUENCES [NOV. 

In particular, for k = r^-—, 

\n^(n-1)z<n-1,m/2 + z{n-1)m/2\1, 
as desired. 

Corollary 6a. Let/7? be an odd positive integer. 
Let Xn = Xm/n(1,0,1) forn > 0. Then A2= CA??- I f " «s odd and n = 0mod Xm, then (Xn, Xn+i) = zm- If cm 

is a prime, then (Xn, Xn+j) = 1 for each positive integern satisfying n^ Omoti zm, For m = 1 and/77 = 3, 

(^n>^n+i) = 1 for n > 1. 

Proof. By Lemma 4a, &2m = Q-m, so that X2 = %m. If n is odd, then Xn =n mod X2, DV Theorem 6. Thus 
\ n =n mod Qm, and if n = 0 mod Qm, then Xn =0mod Qm. Since n + 1 is even, X^ divides X,,^-/, by Theorem 
1. Therefore both Xn and Xn + i are divisible by X2- By Theorem 4a, the only divisors of both Xn and Xn+-j are 
divisors of X2- Therefore X2 = (Xn, Xn+i). 

Now for n either odd or even, Theorem 4a still shows that the only divisors of both Xn and X^zare divisors 
of X2. Thus if X2 = zm >s a prime, then the conditions Xn =n mod zm and n4 0 mod sim show thate^ does 
not divide Xn. Thus (Xn, Xn+1) = I 

Form = 1, pu t * = z = / i n Theorem 2. 
For/77 = J, we have X2 = 4, so that after dividing by 4 in Theorem 4a, we find 

l-(Xn+2)Xn + (Xn-<i+ 1)Xn+1 for odd/7 
1 = \ 

( (Xn + VXn - Xn->iXn+i for even n. 
Corollary 6h. Let m be an even positive integer. Let Xn = Xmrfl (1,0, 1) for/7 > 0. Then (Xn, Xn+f) = 1 

for/7 > 1. 

Proof. This is an immediate consequence of Theorem 4b. 
Example. To illustrate Corollary 6a, let/77 = 5. Recalling the abbreviation 

^5 - ^5,n(lO,l) = 9.5nt1A1)/l5(lO,1) 

for/7 > 0 and Lemma 4b, we have for n > 2: 
( 1lXn-j +Xn-2 + 2 for odd/7 

^ A 7 = { 
{1lXn-i+Xn-2 foreven/7. 

We write out the first 12 X's and factor them 
X0 = 0 = 0 

Xt = 1 = 1 

X3 = 11 = / / 
X3 - 124 = 22-31 

>4 = 1375 = XJXl+4) 

X5 = 15251 = 101-151 

X6 = 169136 = X2Xl 

X7 = 1875749 = 29-71-911 

X8 = 20802375 = X4(X2X,+4) 

X9 = 230701876 = X3 (X2 X6 +3) 

X10 = 2558523011 = X2X2
5 

Xn = 28374454999 = X2-199-331-39161. 

In agreement with Corollary 6a, we have (Xn, Xn+j) = 1 for 1 <n < 9, but (XJQ, Xn) = 11. 



1976] DIVISIBILITY PROPERTIES OF RECURREPJT SEQUENCES 375 

5. THE EQUATION (ZmAn) = Z(m,n) 

Lemma 7. Let Xj = \rlj(x,y,z) for m > 1 and / > 0. If k is a positive integer satisfying (j,k) = 1, then 
(Xj,Xk)=l 

Proof. Write 1 = sj - tk (orsk- tj) wheres and fare nonnegative. Lettf= (Xj, X/<h Then d\XSJ- and d\Xt/< 
by Theorem 1. Thus d\(\SJ; Xt/<), which is to say dKX^, X^+j). By Theorem 5, we have^= 7. 

Theorem 7. Letzm = Q.m(x,y,z)torrn>O.Thenform>1andn>1,(zm,zn) = Z(mfn). 

Proof. Let d = (m,n). Let / = m/d and k = k/d. Then (Xj, X/<)= 1, by Lemma 7. Now em = Xye^ and e„ = 
*Xk%d- Therefore (9.m, zn) = fi<y. 

Lemma 8. The following items hold true when restated in terms of (x,Of 1) and (1,0,1), instead of (x,0,z): 
Lemmas 4a and 4b, Theorems 4a and 4b, Theorem 6, and Lemma 7. 

Proof The resulting restatements are special cases, to which the proofs already given apply. 

Theorem 8. The equations (SLm, zn) = 9.(mnj and (Xj, Xn) = X(jtk) as in Theorem 7 and Corollary 7 
hold if c and X are applied to (x,0,z) and (x,0,1). They also hold for (1,0,1) if m is even or equal to 1 or 3. 

Proof The first statement follows from Lemma 8 exactly as Theorem 7 and Corollary 7 follow from 
Lemma 7. 

For the second statement, we obtain d\(Xtk, Xt/<+i) as in the proof of Lemma 7 and haved = 1 by Corol-
laries 6a and 6b. Then the methods of proof of Theorem 7 and Corollary 7 apply. 

6. IRREDUCIBILITY OF 2 POLYNOMIALS 

Lemma 9. The polynomial Qn(x,y,0) is irreducible over the rational number field if and only if n is a 
prime. 

Proof. It is known [3] that the generalized Fibonacci polynomial zn(A,B,0), where A + B =x and AB = 
-y, is irreducible if and only \\ n is a prime. The present lemma is an immediate consequence. 

Theorem 9, The polynomial SLn(x,y,z) is irreducible over the rational number field if and only if n is a 
prime. 

Proof. If n is not a prime, we have Theorem 1. Suppose n is a prime and that zn(x,y,z) = d(x,y,z)q(x,y,z). 
Then one of the polynomials d(x,y,0) and q(x,y,0) must be the constant 1 polynomial, by Lemma 9. Supposing 
this one to be d(x,y,0), we have d(x,y,z) = 1 +ze(x,y,z) for some e(x,y,z). The remainder of the proof is identi-
cal to that of Theorem 3. 

Lemma 10. The polynomial zn(x,0,z) + 2zn/2, where n is even, is irreducible over the rational number 
field if and only if n = 2k for some k > I Further, the polynomial zn(x,0,z)for odd n is irreducible if and only 
if n is a prime. 

Proof These two results are proved in [2 ] . 

Theorem 10. If n = 2k for some k > 1, then the polynomial 9.n(x,y,z) + 2zn/ is irreducible over the 
rational number field. 

Proof Suppose sin(x,y,z) + 2zn = d(x,y,z)q(x,y,z). Then one of the polynomials d(x,0,z) and q(x,0,z) 
must be the constant 1 polynomial. Supposing this one to be d(x,0,z), we have d(x,y,z) = 1 + ye(x,y,z) for some 
e(x,y,z), by Lemma 10. Consequently, 

SLn(x,y,z)+2zn/2 = q(x,y,z) + ye(x,y,z)q(x,y,zj. 

Once again, the remainder of the proof is identical to that of Theorem 3, except that here we have yxn~ in-
stead of zxn~1. 

REFERENCES 

1. S. L Basin, "A Note on Waring's Formula for Sums of Like Powers of Roots," The Fibonacci Quarterly, 
Vol. 2, No. 2 (April 1964), pp. 119-122. 



376 DIVISIBILITY PROPERTIES OF RECURRENT SEQUENCES NOV. 1976 

2. G. E. Bergum and V. E. Hoggatt, Jr., "Irreducibility of Lucas and Generalized Lucas Polynomials," The 
Fibonacci Quarterly, Vol. 12, No. 1 (Feb. 1974), pp. 95-100. 

3. V. E. Hoggatt, Jr., and C. T. Long, "Divisibility Properties of Generalized Fibonacci Polynomials," The 
Fibonacci Quarterly, Vol. 12, No. 2 (April 1974), pp. 113-120. 

4. J. Riordan, Combinatorial Identities, Wiley & Sons, New York, 1968. 
5. W. A. Webb and E. A. Parberry, "Divisibility Properties of Fibonacci Polynomials," The Fibonacci Quarter-

ly, Vol. 7, No. 5 (Dec. 1969), pp. 457-463. 

******* 


