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1. INTRODUCTION

The Fibonacci numbers, the Fibonacei polynomials, and the generalized Fibonacci polynomials, these latter

defined by .
Untx,y) = xup-qly)+yup-a(x,y); uglxy) = 0, uglxy) =1,

all have the following divisibility property:
(1) i min, then upm|up .

In their recent paper [3], Hoggatt and Long prove (1) and more:
(2} ifm > 17and n > 1 then (uy, up) = Uimn) -

Further, if p is a prime, then u,(x,y/ is irreducible over the rational number field, a result originating with
Webb and Parberry [5]. Similar results for Lucas polynomials and generalized Lucas polynomials are proved by
Bergum and Hoggatt [2].

In this present paper, we consider divisibility properties of certain polynomials which include the generalized
Fibonacci polynomials and a modification of the generalized Lucas polynomials as special cases.

Letx, y, z be indeterminants and let
(3) fp = (x +y)f,,~7 —Xxyfn-2; fo=0 f;=1.

Definee, =4 ¢, (f) = f = f,, and
Ry 1(f) +22,-2(f) foreven n
Unlxy.z) = enlf) = { F9,-1(f) + 28,_o(f) + 227172 g0 odd 1,

where £/ is replaced by f; for / > 0 after the multiplications involving £ are carried out. Since
folxy) = X" —y")ix —y)
forn = 1, it is easy to write out the first few 2, (x,y,2/ as follows:

g, =0 =1
Q, = {x—ylx—-yl)=Ff
2, =(X2—y2}(x—y} fz
9, = [x* =y +3z2(x —y)] fix —y) = f, +3zf,
Q, = [x* —y* +4z(x® - y2)] Mix —y) = f, +4z,
o, = F, +5z2f, + 52*f,
Q, = f, +6zf, +9z°f,
o, = f, + 7zf, + 142>, + 72°F,
0, = f, +82zf, + 20°F, + 162°F,
Q, = f, +89zf, +272*f, +302°f, + 9z°f,

I

1}

In general,

w
- n+1—i n—1-—i i . - § (n—2)/2forevenn
W ez = [( i ) - ( i—2 H Z'fn-2;, where w 3(n— 1)/2 forodd n
=0 '
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Several special cases of the polynomials £, (x,y,2) are as follows:

Fibonacci numbers fa, 3,0);, a+B=1 af= -1
Fibonacci polynomials (a0}, a+b=x ab=-1
generalized Fibonacci polynomials 2,(AB0O),; A+B =x, AB = -y
modified Lucas numbers e,(1,0,1)

modified Lucas polynomials 2n(x,0,1)

generalized modified Lucas polynomials ¢,,(x,0,z)

For comparison with (unmodified) sequences of generalized Lucas polynomials £, (x,z), Lucas polynomials
L,(x, 1), and Lucas numbers L, (7,7} we have, forn=0, 1, -,
L,(1,1): 2,1,3,4,7,11,18, 29, 47, 76, 123, 199, 322, 521, -,
2,(1,0,1): 0,1,1,4,5, 11, 16, 29, 45, 76, 121, 199, 320, 521, ...,
Loz} = xlp-q1ix,2) +zLpo(x,2), Lolxz) = 2 Lilxz) = x;

L_n,(X,z) for odd n
(5) X (02} =Y\ [ (xz) - 22"7? forevenn
© 0 (ny.z) = Lo = Lafy2)
X=y

In Section 2 we prove that the divisibilities in {1) hold for the polynomials ¢, {x,y,z) In Section 3 we prove
that consecutive terms of the sequence 2,(x,y,z/ are relatively prime. In Section 4 we prove the same for se-
quences of the form ¢,,,,/2m, where m isfixed. In Section 5 we prove that (2) holds for the sequence ¢, {x,y, z).
In Section 6 we consider the irreducibility of some of the ¢, (x,y,z).

2. AMULTISECTION THEOREM

Lemma 1. The sequence 2,(x,y,z), forn=1, 2, -, is generated by the function

1+2zt*
(1—xt—zt* {1 — yt— zt*)

Glxy,zt) =
Proof. Let
x(t) = T—xt—ze* = (1—t,t)1—t,t) and y(t)= T—yt—zt> = (1—t,t)(1~t,t).

It is easy to check that
-xft) =yt

(x —ylGix,y,zt) =

x(t) ylt) ’
and it is well known [1] that —x’(¢)/x(t) generates a sequence of sums of powers of roots of x/t) Explicitly,
(7) x —y)Gix,y,zt) = {s‘(x)+s2(x}t+ =[5 y)Fs,lyde+ ] } ,

where s,(x) =7 + t'27 is the n 77 (unmodified) generalized Lucas polynomial L, (x,z). Thus, the sequence s, (x/
—$,ly) generated in (7)is L, (x,z) — L,(y,z). By (B), the proof is finished.
Theorem 1. Vi min, wherem = 7 andn = 1, then &, (X, 1,212, (x,y,2).

Proof. (The multisection procedure used here is explained in Chapter 4 of Riordan [4].)Them ~ 7, m
section of the series in (7) is

S O™ b 5o (2T b s (y )T 4 o (2T 4 ),
which we write as
X =y o t™ 7 + 2o, £2m 7 ),
Again as in [1], we know that s, (X} + sop, (x)t + - = =X'{t)/X(t), where

X(t) = (1=t = tF1) = 1= spix)t + (-2)7t2,
and similarly,
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Smly) +somy)t+-  =YTt/Y(t),
where
Y(t) = (1= tFNT = t't) = 1= smly)e+(—2)"t2.
Thus,
) = XM _ =Yl o XY - XY

x = yNom + omt + - X(1) Y(t) XY

Write 7/XY as Hg + H1t + Hot? + - . Then

Up + Lom t + e = ;_1_; (XY = XYNHo+Hit +HotZ + )

= 0 [1—(—2)"t2](Ho+ Hit + Hot? + ).
Therefore, if n = km, then ¢, = & [Hpmq1 — (—2) " Hi_3].
3. CONSECUTIVE RELATIVELY PRIME POLYNOMIALS
The m — 1, m section of xG(x,0,z,t) = L, + L,t+ L,t*> +--readily provides a well known (e.g., [4]) recur-
rence relation
Lom = LenLin-1)m — (“z/mL(n-Zlm

for subsequences of (unmodified) generalized Lucas polynomials. Substituting for the L’s according to (5), we
readily obtain the following lemma for madified generalized Lucas polynomials.

Lemma 2. LetQ, =2,(x,0,z) forn > 0. Then forn > 2,

§ 2m(X2(n-1)m +Zz’”'”’”/2)‘+zmsz(,,_2;,,, for odd m and odd n
fam = \Q X8 n=1)m +2"Ln-2)m for odd m and even

(n=1)m/2y  for evenm.

Lm = (X +sz/2}9(n—7)m -2 p-2)m + 22
Theorem 2. Lete, =2%,(x,0,z) forn = 0. Then forn > 1,
by J X022 (n=1)72 )0+ (x0p-7 +42 172 ), 11 foroddn
Xzo o= { (x8 +42" 2 Jop — X%- 19+ 1 forevenn.
Proof The proposition' is obviously valid for n = 7. Suppose its validity for arbitrary odd 7. Then for any
even 7, :

"2 = (xoy g #4222 )0 o 4222y
x2" 1 = (x20,-2 +4z"/2)92,, - x(2%-1 +2:"2)0 -4
= (X% — x20y_ 1 +42"2) 2y — X0 12291 +22"7%)
= (xe), +42"2)8), — X2p_1 (X0 + 2991 + 227?)
= (x2, +42"2)0 — X0p-1947 -

Now suppose the proposition valid for arbitrary even n. Then for any odd n,

"2 = —X%pn-2% + (X2p-1 +4z("’2’/2)sz,,-7

X
n-1 (n- 7}/2)2Qn_7

F74 = —XZQp-28p * (X8p-1 + 42
= —x(% — X2p-7— Zz("_”/z)sz,, +(XQp-1 + 42
= —x(, = 22" 2)o + (xp_ g +427712)z200_ 1 + X200 01
= x(2, #2220 b (xep g+ 4277 12) 20, 1 4 x%000 e gt dxz
ey 22 V200 4 (xon 1 #4202 g0, by )
= x(2y #2220 txep g #4220

(n-7}/2}an_7

(n- 7)/2}Qn

Corollary 2. Lete, =¢,(x,0z) forn > 0. Then (¢,, ¢pp1) = 1forn > 1,

Proof Theorem 2 shows that the only possible divisors of both ¢, and 2,+7 are of the form x'z7 where
0</<1and 0<j<n— 1. Equation (4) shows that j = 0. Reading x for fin (4), we see that x divides ¢, (x,0,z)
only when 7 is even. Since x'29 divides consecutive Q's, we have /= 0.
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Lemma 3. Lete, =2,(x,y,0)=f, forn > 0. Then (2,, ¢,+7)= 1forn > 1.

Proof. Clearly (f;,f2) = (f2,f3) = 1. Suppose for arbitrary n > 2 that (f,_p, f,—7) = 1. 1f d(x,y) divides
both f,,-7 and 7, then by (3), d(x,y) divides xy7,-o. Thus d(x,y) divides f,-2, since (xy,f,-2) = 1. But the
only divisor of both f,,_o and f,,—; is 1. Therefore d(x,y) = 1.

Theorem 3. Lete, =2,(x,y,z) forn > 0. Then (2,, ¢,+7)=1forn > 1.

Proof. Suppose dix,y,z) divides both 2, (x,y,z) and ¢,+7(x,y,z). Then d(x,y,0) divides both ¢, (x,y,0) and
Ln+7(x,y,0). By Lemma 3, dix,y,z) = 1 + ze(x,y,z) for some efx,y,z). Since 1 +ze(x,y,z) divides 2,(x, y, z),
we have

aixy.z) = qlx,y,z) +ze(x,y,z)q(x,y,z)

for some gfx,y,z). Now z does not divide g(x,y,z), since z does not divide 2, (x,y,z). Therefore the term x" Tin

2n(x,y,2) oceurs in gfx,y,z), Consequently, unless efx,y,z) is the zero polynomial, some nonzero multiple of
2T occursin the polynomial ze(x,y,z)q(x,y,z). But ¢,(x,y,z) has no such term. Therefore e(x,y,z) is the zero
polynomial, so that d(x,y,z) = 1.

4. SUBSEQUENCES OF ¢,

In this section we consider subsequences of the form &,,, 29,,, 23, -+, where m > 7. Since each term is
divisible by the first term, let us divide all terms by the first, and let Ay, ,, = ¢; /2, forn > 0. Then by Theo—
rem 1, form > 7 and k = 7, Ny k| A, » whenever k|n. Do the X sequences also inherit from the ¢ sequence the
property that consecutive terms are relatively prime?

Lemma 4a. Let\, =\p n(x,02) forn > 0. Then forn > 1,

NoXp-1 for odd m
Xen-1)m = ()\2—4/"/2})\,,_7 forevenm.
Proof. By Lemma 2,

X232 for odd m
2m =

x0P +42™20,, for evenm.

Thus, for odd m,

Q
Xen~1)m = '2';—77 Ln-1)m = N2Xn-1 .
SZ"I'l
Forevenm,

_4,m/2
X2Yp-1)m = (om — 4z ;m)Q(n-Hm - (>\2-—42m/2}7\n_7.
SzI7'7
Lemma 4b. Let N, =N\ n(x,0,z) forn > 0. Then for odd m and n > 2,

{ Ao # 2N + 22 1M72 t01 odd n

n .
MoNa—1 +2™\p-2 forevenn

and for even m,
Ap = Mo =222 )N, 1 = 2" Npon + 22172
with Agp=0and \; = 1.

Proof. In Lemma 2, divide both sides of the three recurrence relations by ,,, recalling that Ak = Qxn/2m
fork=n,n— 1,n— 2. Now replace x2(,-7)m by Ao\,-7 for odd m, and replace x¢,, by Ao — 427 for even
m.

Theorem 4a. Let N\, = Am,,(x,0,2) forn > 0. Then for odd m and n > 7,

§ ~N2(Nn 22 R)N b (Nghog #4272\ for odd

>\22(n—7)m _ ‘
AoNn 42" )Ny = Ao M= 1At foreven n.
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Proof. Referring to the proof of Theorem 1, we know that for odd m,

+ M2
Un *om + = Ly )IT(t)ZY(:)

so that
N1 #Not+ = Glsmix), smly) 2™, t] .

Since s, (y) =L, (y,z), as in theproof of Lemma 1, Egs. (5) and (6) show that s,,,(y) = 0 for all odd m. Further,
Sm(x) = xm, which by Lemma 4a equals 22, /%, which is Ao. Therefore,

N7+ Xhot+-= G(A3, 0,27, t) = 01(N2, 0,2™) +22( N5, 0. 2)t + -,

by Lemma 1. Thus Theorem 2 applies with x and z replaced by Ao and 27, respectively. The result is exactly as
stated above.

Theorem 4b. Let\, =N\m n(x,0,z) forn > 0. Then foreven mand n > 1,
Z(n—i)m = _()\n _ Zz(ﬂ— 7)m/2))\n +>\n_1)\n+7 i

Proof The proposition is clearly valid for n = 7. For arbitrary n > 7, suppose that

Zn=2Im _ —N 2,(n=2Im/2, .

n-1—" -1+ Np-2Np-
Then

201 L N s+ o= 222 Ny T M — [Ny = (Ng— 22772 Ny q = 2= 1IM2) 3
by Lemma 4b

R N ARLIST) VS VP W
Corollary 4. Let\,=N\m n(x,02) forn > 0. Then (N, Np+7) = 1 for all positive integers m and n.

Pmof. For odd m, Theorem 4a shows that the only possible divisors of both A\, and A\,,+7 are of the form
N5z/, where 0 <i < 7and 0<j<(n— 1)m. Asin the proof of Theorem 4a, N, =2, (N2, 0, "), sa that (4)
gives (for odd m only),

w -
_ n+1—i n—1—i mi gx _ § (n—2)/2forevenn
M X [< i ) N < i-2 ) j 27 fn-ai. Where W = _7)j2 for odd n,
=0
and f§(x,0) = fx(N2,0) = )\5_7 for k > 1. Thus A, divides A, only when n is even. Since )\2/ divides consecu-
tive \'s, we have / = 0.
Now for any m, Theorem 4b and the argument just given show that the only possible divisors of both A, and
Nn+7 are of the form z/ with 0 <j < (n — 7)m. 1f 2/ divides \,, then z/ divides ¢, = ¢ 2,. Thus/j =0, by (4).

Lemma 5. Let N, =Nm,nlx,y,0) forn > 0. Then (N, Np+7)=1forn > 1.

Proof. Since z = 0, we have N, = frm /fm = fp(x™,y"™ ). Now (3) is used to complete the proof, just as in
the proof of Lemma 3.

Theorem 5. Let N, = N p(x,y,z) forn > 0. Then (N, Npsg) =1 forn > 1.

Proof. The method of proof is exactly as for Theorem 3. Here the exponent of x to be considered is min-1)

rather than "7,
Theorem 6. Letm and n be odd. Let Ny = Ny p(x,0,2) forn > 0. Then forn > 1, N, =nz (n=1)m/2 o od
)\f"roof. By Lemma 4b,
Ny = (2™ Nyop+ 227 1M72) mod N, for odd .
Repeated application of this congruence gives
Ap = 22("_ 7)m/2+zm)\n_2 — 22("_ 7)m/2+zmlzm>\n_4+2Z(n—3)m/2) - 47 (n—I)m/2+22m)\n_4E

= Zkz("’7}m/2+zkm)\n_2k for k=1,2 -, ﬂ_g_l )
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In particular, for k = '15_7_,

N, = (n— ”z(n—Hm/2+z(n—1}m/27\7 .
as desired.

Corollary 6a. Letm be an odd positive integer.
Let Ny = Am,n(7,0,7) forn = 0. Then Ao = 2. f nis odd and n =0 mod Ay, then (N, Njpr7) = 2m. oy
is aprime, then (\,,, Ap+7) =1 for each positive integer » satisfying n# 0 mod ¢,,,. Form = 7andm =3,

Nn. Np+7) =1 for n > 1.

Proof. By Lemma 4a, 0o, = Q,,Z;, so that Ao = ¢,. If n is odd, then A,, =n mod A5, by Theorem 6. Thus
N, =nmod 2, and if n =0 mod ¢, then N, =0 mod ¢,,. Since n + 7 is even, Ao divides A ,,+7, by Thearem
1. Therefore both A, and A, +7 are divisible by A5. By Theorem 44, the only divisors of both A, and \,,+ are
divisors of Ao. Therefore Ao = (N, Np27).

Now for n either odd or even, Theorem 4a still shows that the only divisors of both A,, and A, are divisors
of Ao, Thus if Ao = ¢, is a prime, then the conditions \,, =n mod ¢, and n# 0 mod ¢, show that ¢, does
not divide A,,. Thus (N, Npr7/)= 1.

Form =1, putx=z=17in Theorem 2.

Form =3, we have Ap =4, so that after dividing by 4 in Theorem 4a, we find

_ f—()\,, +2)Ny + (Np-7+ 1)Np+7 foroddn
1 (Nn # T)\p = Np=1Nn+7 for evenn.
Corollary 6b. Let m be an even positive integer. Let N, = Ny, (7,0,7) forn > 0. Then (N, Npr7) =1
forn>1.

Proof. This is an immediate consequence of Theorem 4b.
Example. To illustrate Corollary 6a, let m = 5. Recalling the abbreviation

N5 = N5,n(1,0,7) = 25,(1,0,1)/25(1,0,1)

forn = 0 and Lemma 4b, we have forn > 2:
T1\p-7+Ap-2*2 foroddn

" UTTAp=7 + Np=2 for even n.

We write out the first 12 \'s and factor them

N =0=0
A, =1=1
N, = 11 =11

A, = 124 = 2.31
N, = 1375 = N, (N2 +4)
\, = 15251 = 101-151
N, = 169136 = N\, \2
\, = 1875749 = 29-71-911
N, = 20802375 = N, (\,\, +4)
N, = 230701876 = N\, (\,\, +3)
N, = 2558523011 = \,\2
N, = 28374454999 = \,-199-331-39161.

In agreement with Corollary 6a, we have (A,, N,+7/)=17for 7 <n <9, but(N7p9, N77/)=11.
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5. THE EQUATION (%, %) = )

Lemma 7. Let\; =Ny jlxy,z) form > 1 andj > 0. If k is a positive integer satisfying (k) = 1, then
(N, M) = 1.

Proof. Write 7 =sj — tk (orsk — tj) where s and ¢ are nonnegative. Let d = (i, M ). Then d g and o | Ak
by Theorem 1. Thus d|(Agj, X g ), which is to say ol (X, Nk+7)- By Theorem 5, we have d = 7.

Theorem 7. Let ¢y =9m(x,y,z) form = 0 Thenform > Tandn > 1, (%n, L) =2 (m,n)-

Proof. Letd =(m,n). Letj=m/dand k= k/d. Then (Nj, N) =1, by Lemma 7. Now 2., = \ j¢y and 2, =
Ak 2q. Therefore (2, 2,/ = 24.

Lemma 8. The following items hold true when restated in terms of (x,0,7) and (1,0,7), instead of (x,0,z):
Lemmas 4a and 4b, Theorems 4a and 4b, Theorem 6, and Lemma 7.

Proof. The resulting restatements are special cases, to which the proofs already given apply.

- Theorem 8. The equations (., %) = 2(m n) and (Nj, Xy) = A(j k) as in Theorem 7 and Corollary 7
hold if ¢ and A are applied to (x,0,z) and (x,0,7). They also hold for (7,0,7) if m is even or equal to 1 or 3.

Proof. The first statement follows from Lemma 8 exactly as Theorem 7 and Corollary 7 follow from
Lemma 7.

For the second statement, we obtain |\, Ask+7/ as in the proof of Lemma 7 and have d = 7 by Corol-
laries 6a and 6b. Then the methods of proof of Theorem 7 and Corollary 7 apply.

6. IRREDUCIBILITY OF ¢ POLYNOMIALS

Lemma 9. The polynomial 2,(x,y,0) is irreducible over the rational number field if and only if 7 is a
prime.

Proof. Itis known [3] that the generalized Fibonacci polynomial ¢,(A,8,0), where A + B = x and AB =
—y, is irreducible if and only if n is a prime. The present lemma is an immediate consequence.

Theorem 9. The polynomial ¢,(x,y,z) is irreducible over the rational number field if and only if n is a
prime.

Proof. If n is not a prime, we have Theorem 1. Suppose 1 is a prime and that ¢, (x,y,z) = d(x,y,z)q(x,y,2).
Then one of the polynomials d(x,y,0) and g(x,y,0) must be the constant 1 polynomial, by Lemma 9. Supposing
this one to be d(x,y,0), we have d(x,y,z) = 1+ ze(x,y,z) for some e(x,y,z). The remainder of the proof is identi-
cal to that of Theorem 3.

Lemma 10. The polynomial ¢,(x,0,z) + 22"/2, where n is even, is irreducible over the rational number
field ifand only if n = 2% for some k > 1. Further, the polynomial ¢, (x,0,z) for odd n is irreducible if and only
if nis aprime.

Proof. These two results are proved in [2].

Theorem 10. 1fn = 2% for some k > 1, then the polynomial 2,(x,y,z) + 272 is irreducible over the
rational number field.

Proof Suppose ¢, (x,y,z) + 2,772 = d(x,y,z)q(x,y,z). Then one of the polynomials d(x,d,z) and ¢(x,0,z)

must be the constant 1 polynomial. Supposing this one to be d(x,0,z), we have d(x,y,z) = 1 + ye(x,y,z) for some
efx,y,z), by Lemma 10. Consequently,

n/2

ey x,y,z) +22"% = qlx,y,z) +yelx,y,z)q(x,y,z).

Once again, the remainder of the proof is identical to that of Theorem 3, except that here we have yx”" in-

stead of zx" .
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