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1. INTRODUCTION AND SUMMARY 
A Fibonacci representation has been defined [1 , 2, 3, 5, 8] as a finite sequence of ones and zeroes (in effect) 

read positionally from right to left, in which a one in position / signifies the presence of the Fibonacci number 
fj, where we take fl = 1, f2 = I The integer thus represented is the sum of the Fibonacci numbers whose pres-
ence is indicated by the ones appearing in the representation. 

Our purpose in this paper is to generalize the notion of Fibonacci representations in such a way as to provide 
for a natural algebraic and geometric setting for their analysis. In this way many known results are unified and 
simplified and new results are obtained. Some of the results extend to Fibonacci representations of higher or-
der, but we do not present these because we have been unable to extend the theory as a whole and because of 
the length of the paper. 

The first step is to extend the Fibonacci numbers through all negative indices using the defining recursion 
fn+2 = fn + fn+i, as n a s D e e n done by Klarner [14]. The second step is to introduce arbitrary integer coeffi-
cients. Thus an extended Fibonacci representation is a finite sequence of integers, together with a point which 
sets off the position of f0. Positions are numbered as is customary for positional notation, and an integer k; in 
position / signifies k,fj. The integer thereby represented is ^\kjfi, the summation extending over those fin-
itely many / for which k; ^ 0. 

Let r denote the golden ratio taken greater than one. Then T2 = 1 + r and 1/r2 = 1 - (1/r). The ring/ of quad-
ratic integers in the quadratic extension field Qfr] of the rationals consists of those elements of the form m + nr 
(or (m/r) + n) in which m and n are ordinary integers. 

Each Fibonacci representation Y ^ k\ft determi nes another integer by taking its left shift; this gives y ^ £;-;/;. 
For each Fibonacci representation Y ^ k;f; we define a quadratic integer in / said to be determined by the rep-
resentation y ^ k;fj] it is 

2>'.^* f + 

This quadratic integer is equal to the sum '^TkjT1, which is a pseudo-polynomial in r. Because of this the usual 
arithmetical algorithms for addition, subtraction and multiplication, when applied to the Fibonacci representa-
tions, yield results which interpret in terms of the ring structure in / . For example, 12.1 represents 2 and 121. 
represents 3 so that 12.1 determines the quadratic integer (21 T) + 3. Similarly, 1.1 determines (1/r) + 1. Since 

(f + 1 ) (H =F + 5' 
we predict that the usual multiplication algorithm when applied to 12.1 and 1.1 will produce a representation 
of 3 whose left shift represents 5, and indeed this is true of the result, which is 13.31. 

A Fibonacci representation is canonical if either all of the non-zero k\ are +1 or else all of the non-zero k; are 
- 1 , and no two non-zero k; are consecutive. A basic theorem in this paper is that each quadratic integer in / is 
determined by exactly one canonical representation. A resolution algorithm is introduced which is shown to re-
duce any Fibonacci representation to the unique canonical representation which determines the same quadratic 
integer. As a result, the canonical Fibonacci representations in the usual arithmetical algorithms plus the resolu-
tion algorithm form a ring isomorphic to the ring / under the correspondence 

289 



290 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

S k'fi "" YlklT'' or the same' S k'f' "" r— * ]C */-/'/ • 
Clearly the subring of representations of zero will be isomorphic to the integers under the left shift 2_\ k/f,; ~* 
^jTkj-ifj, since in the case of zero representations this amounts to J^k,f,^ V^kjT1. The reader is re-

ferred to the text for sample calculations with the resolution algorithm. 
One consequence of the foregoing remarks is that for every pair of integersm and/7 there is exactly one can-

onical Fibonacci representation of/77 whose left shift represents n (canonically). (This appears in [14] for natu-
ral m and n and in [13] for the general case.) This representation can be determined from the resulution algo-
rithm by starting with/7./77 which represents^ + n. This of course provides an infinity of canonical representa-
tions for each integerm, one corresponding to each choice of n. 

By identifying the quadratic integer - + n with the point (mfn) in the plane, which in the present context we 
refer to as the Fibonacci plane, we are able to arrive at simple geometric characterizations of those choices of n 
(for a given m) which will result in the standard Fibonacci representations in the literature, and some new ones 
in addition. Formulas giving n as a function of m for these representations are an immediate consequence of the 
geometry. 

It is shown in Section 2 that the space of integer sequences ixn Y satisfyingxn+2 = xn +xn+i is naturally 
isomorphic to the ring/. Consequently the results on canonical Fibonacci representations interpret for these 
sequences, which we call Fibonacci sequences. Namely, given a Fibonacci sequence with zerof and first terms 
XQ and xj, respectively, let *jT]kjfj be the canonical Fibonacci representation which determines the quadratic 
integer — +xx. Then the sequence ixn I is uniquely expressible as a signed sum of distinct, non-consecutive 
shifts of the sequence ifnl of Fibonacci numbers, and the sum is exactly that which is determined by the 

canonical representation ^\kjfjf wherein position / is associated with the / f left shift of ifn\ . Moreover, 

the canonical representation V k/f,- represents the term XQ and its various left and right shifts represent the 
corresponding terms of the sequence \xn\ . (Again see [14] for special cases and see [8, 13] for generaliza-
tions.) That is, every Fibonacci sequence of integers appears canonically ''in Fibonacci" as a sequence of shifts 
of a fixed, signed block of zeroes and ones. 

Consider for example the Fibonacci sequence having;^ = 5, x-j = 7. By the resolution algorithm 7.5 reduces 
to 10100.1. This means that \xnX is the sum of the fourth and second left shifts and the first right shift of 
ifnl. Moreover, the sequence - , 5, 7, 12, - appears "in Fibonacci" as ••-, 10100.1, 101001., 1010010., - . 

Various other results appear in the paper, such as other canonical Fibonacci representations obtained by geo-
metric means, hyperbolic flows and number theoretic properties of flow constants. 

It is a pleasure to acknowledge the kind assistance of many of our colleagues and acquaintances, particularly 
that of Professors J. Luh and L Carlitz. 

2. THE RINGS X, F, M AND / AND THE FIBONACCI PLANE P 

2.1 Introduction. The analysis of Fibonacci representations presented here rests on a natural ring s t ruc-
ture for the space of integer Fibonacci sequences. The purpose of Section 2 is to introduce the space of integer 
Fibonacci sequences, to show how its natural ring structure arises, and to introduce other isomorphic rings of 
interest in investigating and interpreting Fibonacci representations. 

2.2. The Spaces X and X. Let X denote the collection of integer sequences <xn IQ satisfying the linear, 
second-order recursion 

(2.1) xn+2 = xn+xn+1. 

These Fibonacci sequences form a module over the ringZ of integers under termwise operations. 
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l e t f = {fn\o be the solution of Eq. (2.1) such that f0= Omd f1 = //the terms of fare customarily called 
the Fibonacci numbers. 

Let a ; X-+X be the left shift on X, defined by 

(2-2) ®({*n}o) = \xn+l\o • 

ByEq. (2.1), 

(2.3) a 2 - a - 1 = 0, 
where 1 and 0denote the identity and zero operators on X, respectively, o is an automorphism of the Z-module 
X, and its inverse o~1 is the right shift on A', with the understanding that the zerof/? term oi o~1(ixn Id) ' s t 0 

bex ; - XQ. 

X is a two-dimensional Z-module; one basis for X is if, off) \, in which 

(2.4) x = fx1-x0)f + x0off), x&X. 

Each sequence x = j xn \1Q in X can be extended by Eq. (2.1) in just one way to a double-ended sequence 
x_= \xn J_~ ; the collection of double-ended solutions of Eq. (2.1) is also a Z-module under termwise opera-
tions, and is isomorphic to X under the correspondence a(x)= x. Members of A'shall also be called Fibonacci 
sequences, but referred to as extended when it is necessary to distinguish them from the sequences in X. In par-
ticular, the terms of f= a(f) are called extended Fibonacci numbers. For these numbers it is readily verified that 

(2.5) Ln = f-1)n+1fn, n^Z. 

No confusion will arise from using o ; X -> X to denote the left shift on X as well as the left shift on X, and 
Eq. (2.3) is valid in either case. Since a is an isomorphism, j £ off) J- is a basis forX in which 

(2.6) x = fx1-x0)f+x0offjt x e X. 

The inverse of o on X, o~ , is the right shift on X. 

2.3. Two Theorems. This section consists of the statement and proof of two theorems. The first of these 
shows that a certain class of quotient rings can be characterized as a certain class of modules. Because X belongs 
to the latter class (in this connection Eq. (2.4) is critical) the theorem provides a ring structure forX. The re-
sults apply equally to X. 

The second theorem shows how the members of this class of quotient rings can be realized as matrix rings; 
this results in a representation of X and X as a certain collection of 2 x 2 matrices in the usual operations. This 
theorem appears in MacDuffee [15] for algebras. 

Theorem 2.1. Let R be a commutative ring with unity 1 and \etp(X) be a monic polynomial in /?A/of 
degree n. LetS be the quotient ring of polynomials modulo pfk) and define A ; S^S by 

Af[qf\)]) = l\q()J] 

for each equivalence class fq(X)] in S. If S is considered to be an /?-module in the operations 

[q /00] + [q2Ml = Id 1M + Q2ML r[qMl = frqM] , 

then A e Hom^^S,/ and S is /7-dimensional over R with basis 

{ lil, A([1]), -.., An~ 1f[1l) } = { lil, M, - , [Xn~1] J.. 
Furthermore/?^ = 0 a n d / ? ^ is the polynomial in RfX] of least degree which is monic and which annihilates 
A . 

Conversely, let 5 be an /7-dimensional /?-module over a commutative ring R with unity 1flet A e Horn/? (S,S) 
and suppose there exists s <E S such that is, A fs), ••-, An'1(s) I is a basis forS over R. Then there exists 
pfk) in RM which is monic and of degree n, such thatp/A,/ = 0 and such that S is isomorphic to the quotient 
ring R[\]/(p(\)) considered as an /?-module. One isomorphism is the mapping 0 which sends 
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n-1 

£ r<Ai(s) to 
i=0 

n-1 

E n\' 
i=0 

This isomorphism induces a multiplication on S by 

si* s2 = <t>~1(<t>(si)(l)(S2)), 

and this induced multiplication makes S into a ring with unity s. 0 is then a ring isomorphism under which the 
action of A in S corresponds to multiplication by the element A7 in the quotient ring Rf\J/(p(K)l 

Proof. LetpM^X" - rn.-i\
n~1 - .» - r0. Note that for#/ /X/ , q2(k)^ R[X], we haveqjfA), q2(A) 

e Horn R(S,S), and 
(2.7) qi(A )([q2(K)] ) = [q / (\)q2 (X)] = q2 (A )([q / (X)J ) . 

Now | / / 7 , A r//7;, .» , An~f([1j) } is the same as i / / / , A / , - , l\n~1]\, and the latter is a basis for 
5 over R becausep is monic. Moreover, by Eq. (2.7) 

pfAHW]) = [X'pfX)] = 10] 

so that pi A) vanishes on a basis and therefore is zero. If q(X)^ RfXJ is monic and q(A) = Or then by Eq. (2.7) 

q(A)([1]) = fq(X)J = [0] 

so that q(X) is a multiple oipfXl Since both q(X) andpfX) are monic, q(X) cannot have lesser degree thmp(X) 
has. Thus /?^ is the polynomial in RfXj of least degree which is monic and annihilates A . 

Now suppose S is an/7-dimensionaI /?-module over a commutative ring/? with unity 1, and let A e Hom# (S,S) 

and s e 5 such that is, A (s), —, A77" frj }• is a basis for 5 over /?. Since An(s)^S, there exist unique ele-
ments ro, r1t — , rn-i of R such that 

A7-/ 

An(s) = J2 nA'fs). 
i=0 

•ro 

Define p(X)^R[X] by 

so that 

But then 
p(A)(A'(s)) = A'(p(A)(s)) = 0 

for each natural number i, and hence p(A) vanishes on a basis and is therefore zero. 
Define 0 as in the statement of the theorem; that is 

p(X) = Xn-rn^Xn'1 -

n-1 

p(A)(s) = An(s)-J2 nA'(s] = 0. 
i=0 

r n-1 

li=0 

It is clear that 0 is a module homomorphism, and must indeed be an isomorphism because it sends the basis 
\s, A(s), - , An~1(s) } onto the basis | [1], A / , - , [Xn~1]\. The rest of the theorem now follows readi-
ly from the manner in which the multiplication * is induced on S. 

Theorem 2.2. Let/? beacommutative ring with a unity and letp(X) (E R[X] be monic with degree/?. Let 
She the quotient ring R[\f/(p(X)l Then each congruence class in S contains exactly one polynomial (possibly 
zero) of degree less than n. Given q(X) ^RfXj let 
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n-1 

HO 

n-1 

Xq(X) - Y* rrt 
1=0 
n-1 

X2q(X) = ^ AyV 
i=0 

-\ 

> modulo/7^ 

Xn~1q(X) >"7>J x ' / 

the right-hand sides being uniquely determined by the choice of [q(\)]. Define a mapping 7which sends the 
congruence class fq(X)] in S to the n x n matrix 

ro 

rO 

rO 

n rn-1 

•n~1 

'n-1 

Jn-1) Jn-1) 
rO r1 

Jn-1), 
rn-1 

Then 7 is a ring isomorphism from S onto asubring of the ring of n x n matrices over/? in the usual operations. 
Proof. We have seen in the previous theorem that S is an /?-module with basis j [1], [k], —, [Xn~1] I. 

In this basis, multiplication by [q(X)J in S is a module endomorphism on S which is represented by the fore-
going matrix. The mapping which sends [q(X)J in S to the endomorphism induced by multiplication by [q(\)J 

is a ring isomorphism of S onto a subring of the endomorphism ring of S. Since representation of these endo-
morphisms by matrices in a given basis is also a ring isomorphism, the theorem follows. 

2.4. Application toX. We now apply Theorem 2.1 to X, taking for A the left shift a and fors the sequence 
f of Fibonacci numbers. Equation (2.3) gives p(X) = X - X- 7, so we let F denote the quotient ring 
Z[X]/(X2 - X- 1). If x e X , by Eq. (2.4)x = (x1 - x0)f + x00(f), so we define (p: X-+ F by (p(x)=(x1- x0) 
+ XQX which can be written (j)(x) = x-1 + xgX\f we introduce (for X) the abbreviation x_7 = x-/-xo- For 
y^X, (p(y) = y-i+ yoX so 

x*y = (p~1([x-i+x0X])([y„i +yokl) 
which works out to 

(2.8) ix*y = (x--jy-i + x0y0)t'+ (x-jyQ + XOY'0 + x0y~i)o(f). 

This equation defines the multiplication in X which makes X into a ring with unity f. Moreover, the left shift o 
in X corresponds under 0 to multiplication by [X] in F, which means that the left shift on X can be realized by 
multiplication in X by off); thus 

(2.9) x *off) = (x.-,f + x0o(f)) *o(f) = x0f+ (x-i+x0Mft = xof + x^ff) = o (x). 

If q(X) is equivalent to m+nX modulo X -X- I then Xq(X) is equivalent to/7-/-f/?7 +n)X modulo X -X-l 
It follows from Theorem 2.2 that X is isomorphic to the ring M of 2 x 2 matrices of the form 
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m n , - , m,n EL Z, m + n J ' ' ' 

under the transformation \p : X-> M defined by 

(2.10) yjjfx) = tx-> M . 

It is clear that the remarks of this section apply as well VQX, in view of Eq. (2.6); Eqs. (2.8), (2.9), (2110) are 
valid with identical right-hand sides when x and y are replaced by x andj/ on the left-hand sides. 

2.5. Extension of F to F. By a pseudo-polynomial over Z is meant a finite sum of the form 

E**' 
in which each / e Z and each k( eZ . The collection Z<X> of all pseudo-polynomials overZ in the indetermi-
nant X is a ring in the obvious way, in whichp(X) = X2 - X- 1 generates an ideal (X2 - X- 1). Let F denote 
the quotient ringZ<X>/(X2 -X- 1). 

Since X~l(X2 - X - 1) = X- 1 - X'1 e (X2 - X - 1) in Z<X>, we see that inZ<X> 

(2.11) X-1 = X- 1 mod ft2-X- 1). 

It follows by taking powers on each side of this congruence that every pseudo-polynomial is equivalent modulo 
X2 - X - / i n Z<X> to a polynomial. Since polynomials are equivalent modulo X2 - X - / in Z<X> if and 
only if they are equivalent modulo X2 - X - / inZAV, it is possible to map each equivalence class in F unam-
biguously onto the equivalence class in F containing the same polynomials, and this mapping /3; F-+F is an on-
to ring isomorphism. 

Define a mapping^ : X ^ Fby 

(2.12) £M = lx_x +xQX]. 
<£is a ring isomorphism if the multiplication in X is defined by Eq. (2.8). In fact, ̂  = /3o0o or1 , making the 
extension of F to F the exact counterpart of the extension of X to X in the, sense that the following diagram 
commutes: 

- x • F 
(2.13) a f 0 . ^ ft 

X : *F 

Under the isomorphism ^ , the left shift in X corresponds to multiplication by [X] in F and the right shift in 
^correspondsto multiplication by A " 1 / = A - / / \n£. It follows that the left and right shifts commute with 
the multiplication in X (and in X) in the sense that 
(2.14) on(x *Y) = on(x) *y = x*onlyJ 

for all integers n. Taking / = / , the unity \w X, and/7 = ±1 gives two analogues in A' of Eq. (2.9): 

(2.15) o(x) = x*o(f), 

(2.16) o-Ux) = x *o-l(f). 

It now follows that any endomorphism of the Z-module X which is a pseudo-polynomial in the shift o can be 
achieved by multiplication in A'by that element of X which is the value of the corresponding pseudo-polynomial 
in / . 

2.6. The Ring / and the Fibonacci Plane P. Conjugation and Flows. Let r be the positive root of X2 - X - 1; 
then r = 1/2<1 + yjb) which is the famous golden ratio, taken greater than 1. Let# denote the field of rational 
numbers. The quadratic extension field QfrJ is isomorphic to Q[X]/(X2 - X - 1) in the standard way; each 
equivalence class in Q[X]/(X2 -X- 1) corresponds to the number in Q[r] which is the common value assumed 
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by all members of the equivalence class under the evaluation X-> r. It is well known that the ring / of quadratic 
integers in Q[r] consists precisely of those members of the form m + nr, m,n e Z Thus we define an isomorph-
ism f : F -> / by 
(2.17) WpftJ]) = p(r). 

This same formula, in which pfk) can be an arbitrary pseudo-polynomial in Z<\> serves to define an isomorph-
ism f ; F-+/. Diagram (2.13) then becomes 

X >F^ 
(2.18) 4 

X- *F'\ 
which still commutes. We note that under the identification f o 0 (resp. f o 0) each integral power of a on X 
(resp. A l corresponds to multiplication by that power of r in /, and similarly for pseudo-polynomials in a.The 
identification^ o 0 mapsx £ ^ t o x~x +x0r = (x0/r) + x1 e / . 

The other root of X2 - X - / is —(1/r) = 1 - r, and the automorphism of Q[r] which fixes Q and sends r to 
—(1/r) is of course called conjugation. Denoting the conjugate of^ -̂ <77 by p + qrf 

p + qr = p +q - #7, 
or, alternatively, 

(2.19) 
T v £ + 0 -q-p 

Conjugation is involutory and therefore has a fixed point space and an involuted space. This is best considered 
geometrically, and for this and other purposes we introduce the Fibonacci Plane P. In analogy with complex 
numbers, we associate to each number (p/r) + q in Q[r] the point (p.q) in the Fibonacci plane. Even though 
the points of the rational plane suffice to represent Q[r], we include all real number pairs into the Fibonacci 
plane. Equation (2.19) is then extended to the Fibonacci plane so as to send each point (u,v)^P to (-u, v- u) 
e P. This is a linear transformation over the reals and is involutory. It consists of a non-orthogonal reflection of 
each point Pin the l/-axis (u = 0) along the line K :v= Vsu. This is illustrated in Figure 2.1. 

Fig. 2.1 Coi njugation in P 
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Given (p/r) + q e Q[r], one readily verifies that 

(2,20) 

and 

(2.21) 

( * • 

- (0 

• . ) -

27-

+ gr)-

- ( ? « : 
7 

- fa + qr) 
2r- 7 

These formulas are analogous to those for the real and imaginary parts of a complex number. 
LetxEiX. In view of the remarks immediately following diagram (2.18), we have 

(2.22) rn [Xf +X1) = ^ +xnH 

for every integer n. By takings = f^X, we obtain the well known identity 

(2.23) rn = !*- + * n+1 fn-1 + fnT, n ^ Z. 

The use of Eq. (2.20) in conjunction with Eq. (2.22) enables one to solve for the general term of sequences 
in X in terms of terms number 0 and 1: 

2T-1 
As a special case of Eq. (2.24) we obtain the classical Binet formula; taking* = / gives 

(2.24) n e Z 

(2.25) rn-(~rrn 

s/5 " 27- 1 
We introduce two principal axes Li and L2 into the Fibonacci plane by 

L.x : v = ru, L2 : v = - (1/T)U. 

These two axes are perpendicular and divide the Fibonacci plane into four regions £/, £//, £/// and iiy, as il 
lustrated in Fig. 2.2, in which for later reference also appear the l/-axis and the line K. 

/f\ V 

Fig. 2.2 The Principal Axes with V and K 
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To each point (u,v) in the Fibonacci plane we associate a pair of distances dl and d2 as follows: d; is the ver-
tical distance (that is, distance parallel to the l/-axis) from the line L,- to the point (u,v), measured positively 
upward, / = 1,2. This is illustrated in Fig. 2.3, from which the following equations follow readily: 

(2.26) dx(u,v) = ± + v, 

(2.27) d2(u,v) = u- + v. 

Fig. 2.3 The Distances^ and*/2 

It is clear that each of the regions £;, £//, £/// and L/v has a characteristic pair of signs for dl and d2. 
Each element (p/rj + q e Q[r] has a norm given by 

(2.28) v [P-+ q) = [P-+q) ( f + q ) = q2 - pq ~ P2 • 

We see that this norm is a determinant 



298 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

(2.29) »(f+<) \ a P\ 
\P+Q q\ 

In case 
^+q = K_o^(x)=^+X,, 

"(?**•) = * 1 
x0 + xx * l \ 

which is the determinant of the matrix \p (x) given by Eq. (2.10). 
Equation (2.28) can be extended to the entire Fibonacci plane, giving a quantity 

(2.30) v(u,v) = v2 -uv-u2 

at each point. v(u,v) is an indefinite quadratic form which vanishes precisely on Lx and/.2. For each non-zero 
real number vQ, the graph in the Fibonacci plane of the equation 

(2.31) v(u,v) = v0 

is called a Fibonacci flow, and P0 is the flow constant. The flows are rectangular hyperbolas in the Fibonacci 
plane having Lt and L2 for asymptotes. The flows with positive constants lie in the regions £/ and £/// and the 
flows with negative constants lie in the regions £// and l/\/, 

It is readily verified that each point in the Fibonacci plane lies on the same flow as its conjugate. Figure 2.1 
shows that the line K divides the plane into two halves, each of which is set-wise invariant under conjugation. 
Since the flows with positive constants lie in regions £/ and £// / , it can be seen in Fig. 2.2 that the two branches 
of these flows always lie on opposite sides of K, It follows that on each such flow, every point and its conjugate 
lie on the same branch of the flow. Similarly, the V- ax is divides the Fibonacci plane into two halves such that 
every point of either half is sent to the other half by conjugation. Since the two branches of any flow with neg-
ative constant always lie on opposite sides of the l/-axis, on each of these flows, every point and its conjugate 
lie on opposite branches of the flow. 

Le t xe X By Eq. (2.22), 

r" ( .£+*.) - ? * * » + ' • 
Taking norms on both sides gives 

(2.32) v(xn,xn+1) = (-1)nv(x0,x1). 

It follows that 

(2.33) v(x2n,x2n+l) = v(x0,xi) 

and 

(2.34) v(x2n~vX2n) = v(x-i,x0) = -v(x0,xi) 

for all integersn. Corresponding to each sequencex^X we define a sequence %(x) = i %n tToo \nP by 

(2.35) %n = (x2n,X2n+lL n G Z . 
Then every point of the sequence £ (x) lies on the flow 
(2.36) v(u,v) = v(x0fx<i), 

and the sequence £ (x) is called the embedding of x in the flow (2.36). The sequencer is said to be of type I, I I , 
III or IV according as to whether the point £ o = (xQlxi) is in region £/ , £/ / , £/// or £/ i / . According to Eqs. 
(2.26) and (2.27), this depends only on the signs oi(xo/r)+xi and XQ/T +XI . 

Equations (2.26) and (2.27), in conjunction with Eq. (2.22) give 
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(2.37) d&n) = d1(x2n,x2n+1)= -± i ^ + x A , 

and 

(2-38) d2l%n) = d2(x2n,x2n+1) = r2n [¥+xi) • 
From these equations it is obvious that all points %n of a given embedding lie in the same one of the four re-
gions £/, £//, £/// and £/| / , and thus on the same branch of a flow. It is also clear that %(x)-dx\&%(-x) = ,-%(x) 
lie on opposite branches of the same flow. The strict monotonicity of the right sides of Eqs. (2.37) and (2.38) 
as functions of .A? shows that, for sequences in A' of a given type, all embeddings possess an identical orientation, 
progressing always from one end of its branch to the other as n increases. This naturally orients the flows to 
conform with the orientation of the embeddings, as shown in Fig. 2.4. Notice that the flows are so oriented that 
lim (v/u) = r along the positive sense on every flow. 

For certain purposes the study of Fibonacci sequences of type I is sufficient, because a sequence of any other 
type can be made type I by either negation, shifting, or both. 

Figure 2.4 Orientation of the Fibonacci Flows 
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3. FIBONACCI REPRESENTATIONS 

3.1. Introduction. Sn Section 3 we introduce the general and the canonical Fibonacci representations, to-
gether with a positional notational system for performing arithmetic with the representations. Basic existence 
and uniqueness theorems are presented, and the results are interpreted in the contexts of some of the rings dis-
cussed in Section 2. An algorithm is given for determining canonical representations, and consideration is given 
to the relationship of previous results on Fibonacci representations to those given here. 

3.2. General Fibonacci Representations, Positional Notation and Arithmetic 
Definition 3.1. Given m e Z, a pseudo-polynomial p(X) = Y ^ /r/A' e Z < A > is said to represent m if 

/ J kjfj = m. The sum V ^ kjfj is called a Fibonacci representation of m, corresponding to the pseudo-polyno-
mial pfk). 

Suppose/?/%/eZ< A > re presents m. By Eq. (2.23) we have 

(3.1) p(r) = YskiT' = ~~T" + ^ k h l f h 

This gives the following theorem. 
Theorem 3.1. The pseudo-polynomial pfk) represents m e Z if and only ifp(r) is of the form (m/rl+n, 

n^Z. The integer/7 is represented by XpfK). 

In this way we associate to each Fibonacci representation an element (m/r) + n e / , a point (m/n)^P and an 

ordered pair (m,n), all said to be determined by the representation T^/r//,-.* We note from Eq. (3.1) that 

\ * Ar,-/// is a representation for/7. The representation £^kj-ifj is called the left shift of the representation 

£w -
We introduce a positional notation for Fibonacci representations by listing the coefficients Ay in the conven-

tional manner from left to right, with a point appearing between the positions corresponding to kQ and k. p Be-
cause the kj themselves can contain multiple digits and even minus signs, any coefficient consisting of more than 
a single digit must be enclosed in parentheses. A minus sign preceding the entire listing is understood to apply 
to every term in the listing. Thus, for example, 2(11)0.5 represents 2f2 + 11 fi + SLj = 18. The left shift of 
this is 2(11)05. (where the coefficients are left shifted, not the point) which represents2f3+ 11f2 + 5fg= 15. 
Thus the associated pair determined by this representation is (18, 15). 

Since the usual algorithms for addition and multiplication follow from the interpretation of a positional rep-
resentation as a pseudo-polynomial in a base, and since Theorem 3.1 relates Fibonacci representations to pseudo-
polynomials in r, the standard algorithms, when applied to Fibonacci representations, interpret In terms of the 
operations on the associated quadratic integers in / determined by the given Fibonacci representations. 

For example, what will result from applying the standard multiplication algorithm to 201.1 and K-D.01? 
Formally, we obtain 

2 0 1.1 
1 (-1). 0 1 
2 0 1 1 

(-2) 0 (-1) (-1) 
2 0 1 1 

2 (-2) 1 2 . (-1) 1 1 

* l t is critical in the sequel to distinguish between that which is determined by ^kjfj and that which is repre-
sented'by Ekj f j . 
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On the other hand, the representation 201.1 determines the quadratic integer (3/r) + 5 and the representation 
K-D.01 determines the quadratic integer (0/r)+ 1 = 1. The product of these in / is (3/r) + 5, which is the same 
as the quadratic integer determined by the result of the foregoing calculation. 

Of course, since / is a ring, subtraction of Fibonacci representations is also possible, and again interprets in 
terms of subtraction of the corresponding quadratic integers. 

It is therefore clear that for some purposes Fibonacci representations are best considered as representations 
of quadratic integers in /, rather than ordinary integers in Z The usual attitude towards these representations, as 
reflected in Definition 3.1, does not allow for a full understanding of the arithmetic of the representations. 

In the general class of representations under discussion, no restrictions have been placed on the coefficients 
kj, other than that they be integers. Consequently, no necessity for carrying and/or borrowing arises in perform-
ing the arithmetic. However, in working with canonical representations the necessity does arise, and can be treat-
ed by the exchange of an integer k in any particular position for an integer k in each of the two positions im-
mediately to its right. This is justified by the identities 

kfj = kfh1 + kfj-2 and AT' = kr'~1 + A T ' " 2 . 

Thus, for example, 21.0 = 3.2 = .53, etc., or, going the other direction, 21.0 = 110.0 = 1000.0, and the equali-
ties here apply not only to the represented integers, but to the associated quadratic integers as well. 

Let ^denote the collection of Fibonacci representations of zero. Members of Zdetermine natural integers in 
/, since by Theorem 3.1 the quadratic integers determined by members of Zwi l l be of the form (m/r) + n with 
m = O. Therefore, under the usual arithmetical algorithms, the collection Z of representations of zero forms a 
ring on which the left shift is a homomorphism onto the ring Z of integers. Thus, for example, 100.01 is a rep-
resentation of 0 which determines the quadratic integer (0/r) + 3, and - 1 . is a representation of 0 which de-
termines the quadratic integer (0/r) - 1. The sum and product of these representations will determine (0/r) + 
2 and (0/r) - 3, respectively. 

3.3 Canonical Fibonacci Representations 

Definition 3.2. A Fibonacci representation J ^ / f ; \s positive canonical if (1) kj £ O => kj = 1 and 

(2) kjkj+i = O for all i. A Fibonacci representation is negative canonical if its negative is positive canonical. A 
Fibonacci representation is canonical if it is either positive canonical or negative canonical. 

We agree to write every negative canonical representation (other than all zeroes) with a prefixed minus sign, 
so that every canonical Fibonacci representation consists of a possible minus sign followed by a finite sequence 
of ones and zeroes with a point (which may be omitted if it immediately follows the last significant digit) in 
which no two ones occur consecutively. The representation consisting of all zeroes can be written 0 or .0 and is 
the only canonical representation which is both positive canonical and negative canonical. 

In any canonical Fibonacci representation other than 0, the positions (indices) of the left-most and right-most 
ones appearing in the representation shall be called the upper degree and lower degree of the representation, 
respectively. The upper and lower degree of the representation 0 are defined to be -°° and +<*>, respectively. 

Theorem 3.2. Let ^ k,-f,- be a positive canonical Fibonacci representation with sum n. Suppose the up-
per degree of the representation is negative and let r denote the lower degree. Then the sum n is positive if and 
only if r is odd, in which case r is the unique negative index/such t h a t - / / * / <n < - / / - / . Similarly, n is nega-
tive if and only if r is even, in which case r is the unique negative index/such that-fy_ 7 <n < -fj+j. 

Proof. From Eq. (2.5) we have that // > O if / is odd and f,- < O if./ is even and not zero. Thus if r is odd, 

the representation \ ^ Ayr"/ can sum to at most 
-1 

j=r 
j odd 



302 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

this being the sum of all the positive terms that could appear in the representation, and none of the negative. 
But 

-1 

E fi= -f'-1 

j=r 
j odd 

by Eq. (2.5) and standard identities for the Fibonacci numbers. Still assuming that/-is odd, the smallest even 

index that can appear in 2 ^ k/f,- is r + 3, so that the representation must sum to at least 

fr+ E fi-
j=r+3 
j even 

since this sum includes all of the negative terms that might appear and excludes all of the positive terms that 
might not. But 

-2 
£ fj = -fr+2 + I and fr + (-fr+2 + D = 1-fr+1 > ~fr+1 

j=r+3 
j even 

and so 

(3.2) ~fr+1 < J2k/f> < ~fr-l' r odd' 
By entirely similar reasoning one shows that 

(3.3) -fr.f < ] P kjf; < -fr+h r e v e n • 

In view of inequalities 3.2 and 3.3, we define, for each negative integer/ an interval // by 

// = (-fj+v -fj-iJ for / odd, 
// = (-fj-1. -fj+il for / even. 

Some of these intervals are shown in Fig. 3.1. 

/ 

- 1 
-3 
-5 
-7 
-9 

/odd 

/ /= H+h-fj-i] 

(0,1] 
(1,3] 
(3,8] 
(8,21] 

(21,55] 

/ 

- 2 
-4 
-6 
-8 

-10 

j even I 
lj= (-fH,-fj+1] 

(-2,-11 
(-5,-2] I 

(-13,-51 I 
(-34,-13] 
(-89,-34] \ 

Fig. 3.1 Some of the Intervals /y Determined by the Inequalities of Theorem 3.2 

As is clear from Fig 3.1, the intervals /y are pairwise disjoint and their union contains the set of all non-zero 

integers. Therefore the sum n of T^Ar/^- falls in the interval /y if and only i f / = /*, and the theorem is proved. 

Alternative proof. The conjugate of *sPkiT'is 5 3 (-1)'kjT~'. Using the assumptions of the theorem, 

we see that 
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•IV-E*^ 
is of the form 

k-1 (*T+T) <k_2 ( - | -72yL3(JL+T3}+...+kr(-L-(-V'T-'} , 

where kr= 1. If r is odd, this is at most 

(H*y^)--*(^) 
and is at least 

j-^.y-S)...^.^),^,,-,) 
By performing the obvious summations and simplifications, and by employing a similar argument when r is 
even, we get __ 

^--h +T+h E* / * - Zk>f> < T'r+1~^H' r °dd-
and 

-^z+r+h E*/*- £ ' / * < - - ' - i ^ i 
Inequalities (3.2) and (3.3) now follow from these by using Eqs. (2.23) and (2.20). 
For each non-zero integers, define r(n) to be the unique negative index/such that/7 e /y. 

Theorem 3.3. If A? is a non-zero integer then either n = fr(n) or else r(n - fr(n)) > r(n) +2. 

Proof. Suppose that/? ̂  fr(n), so that///?>/ < -2. For r(n) odd, it follows from the definition of r(n) that 

~fr(n)+1 < n < -fr(n)-1 -

Subtracting fr(n) throughout gives 

~fr(n)+2 < n~ fr(n) < ~fr(n)+1 • 

As can be seen from Fig. 3.1, if k is an odd, negative index, then 

i-h+2. - W = (-fk+2,-U u (~l 0] u (0, - W =\ u lj u (-1,0] u I u /y . 
\j=k+3 i W=*+2 / 
\ jeven / * / odd ' 

From the definition of r, necessarily 

r(n-fr(n)) > r(n)+2. 

Similar reasoning applies in case r(n) is even. 
Theorem 3.4. Every integer n, positive, negative or zero has a unique positive canonical Fibonacci repre-

sentation with negative upper degree. For n = 0 the representation is .0. For n ^ 0 the representation is fj + 
fj + ...-/- fj in which/7 = r(n), 

i-1 

ii = r (""E % 
p=1 
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for 1 <i <s and s is the first positive integer such that 
s 

p=1 

Proof. Certainly .0 represents the number zero canonically, and has negative upper degree —°°. Accord-
ing to Theorem 3.2, any other positive canonical Fibonacci representation with negative upper degree cannot 

represent zero. If n t Q, define, as in the statement of the theorem,/; = r(n) and 

i-1 

H = r\n~Y. fJr 
p=1 

whenever/ > 7 and 

P=i 

According to Theorem 3.3 f / />/ /_/ +2 for each /, and since all// are negative, the process must terminate after 

finitely many steps. The only way for this to happen is for 

s 

"-E % = ° 
P=i 

for somes'. 
This establishes the existence of the representation. If 

Ylk'f> and Ylk''f> 
are two positive canonical representations for/7 both having negative upper degree, Theorem 3.2 states that they 
have equal lower degree. If the // of least index is subtracted from both representations, the results are still pos-
itive canonical, still of negative upper degree and still equal, so Theorem 3.2 applies again. Continued applica-
tion of this argument proves the representations to be identical. 

We note that the assumption of negative upper degree is essential to Theorem 3.4. For example, the sum fn + 

Ln is a positive canonical representation of 0 for every even integer n. 
Define a strip S in the Fibonacci plane to consist of all of those points (u,v) for which 0 <d2 < 1. Based on 

simple geometry, one readily concludes that for a quadratic integer (m/r) + n e /, 

(3.4) (m,n) e S if and only if n = - \\ ^ |1 , 

where [| |] denotes the greatest integer function. 

Theorem 3.5. A quadratic integer (m/r) + n e / is determined by a positive canonical Fibonacci represen-
tation with negative upper degree if and only if (m,n) <ES, i.e., if and only if (m/r) + n <E.[Q, 1). !n this case, the 

positive canonical representation with negative upper degree is unique. 
Proof. Suppose (m/r) + n is so determined. Then there exists a positive canonical Fibonacci representa^ 

tion £\kjfj of negative upper degree such that (m/r) + n = T ^ / V . Clearly 

0 < Yl k''T' < T~1
 +T~3 + T~5 +~' = h so (m*n) e S. 
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Suppose (m,n) e S. By Theorem 3.4 there exists form a positive canonical Fibonacci representation ^ kjf,-

of, if (n 
I 3.4, 

M 
with negative upper degree. By the first half of this proof, if (m/r) + n' is the quadratic integer determined by 
this representation, then (m, n')^S. In view of condition 3.4, 

n = n = 

so that *y\kjfj determines (m/r) + n. 

The uniqueness follows from the uniqueness of the representation of m as asserted in Theorem 3.4. 

Theorem 3.6. For each quadratic integer (m/r) + n e / there is one and only one canonical Fibonacci 

representation V"* kjf; which determines (m/r) + n. Points in regions £/ and £// correspond to positive canoni-

cal representations and points in £/// and L/y correspond to negative canonical representations. 

Proof. Since the negative of any point (m,n) in £/ or £// is in £// / or £ / ^ and vice versa, it is sufficient to 
prove existence and uniqueness of canonical representations determined by 0 and by points in L/ and /.//, show-
ing that the latter are necessarily positive canonical. 

Let J^kjff be a canonical Fibonacci representation other than 0. Theorem 3.5 assures that \ * kjf; cannot 
determine 0 if the representation is positive canonical with negative upper degree. But with the proper choice of 

sign and exponent/?, ^ E ^ ' - P is positive canonical with negative upper degree and determines ± — E ^ / T ' 

£ 0, so that y ^ / r / r V f l . Thus the only canonical Fibonacci representation determining zero is 0. 

Let (m/r) + n be a point in £/ or £/} (in the sense that (m,n) is in £/ or £//) other than zero. Then d2(m,n) > 

. inW. ( - i (H) "• 
Thus for some sufficiently large s, say s = SQ, 

1 I rn , \ ._ c , . 00 / / m.n 1 +n) 6 5 and so — — + n 
jSo \ r J Ts0 \ r 

is determined by a positive canonical Fibonacci representation Y ^ k/f,- with negative upper degree. Thus 

T*0 \ co v T -") = E ^ so that ¥+n = E k'rl+S° 

showing that (m/r) + n is determined by the positive canonical representation y^k;f j+S o . If E ^ and 

y^/r/ f /are positive canonical representations determining (m/r) + n, then for some integer f0/ E ^ " - f o and 

22 k'jfj-t both have negative upper degree and both determine 

/ (m + n 
Ttn \r 

so by Theorem 3.5 are identical. Hence E ^ ' and E ^ ' are also identical. Finally, no point in £/ or£/ / 
other than (0,0) can be determined by a negative canonical representation, since for such a representation 

d2 = E kiji < °-

For each positive real numbers, define s(u) to be the largest integer exponent /such that r1 < u. Given u> 

0, le t / ; =s(u), i'2 = s(u - r'1) and in general 
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j-1 . , M . 
ij = s (u- 5 j rp ) so long as u - V * rp £ 0. 

P=1 p=l 

The sequence//, /2, -"terminates at any/such that 

" ~ E r ' p = ft' 
otherwise it continues indefinitely. 

Definition 3.3. For a given positive real numbers, le t / / , /*2, ••• be the sequence determined above. The 
sum 

P 
is called the r-expansion of u. If £/ is negative, the r-expansion off/ is that of -u, preceded by a minus sign. The 
r-expansion of zero is simply 0. 

Theorem 3. 7. Let*/ be a real number with r-expansion 

p 

Then \ip\ is a (decreasing) sequence in which ip+i <ip - 2 for each p, and the expansion Y ^ rp sums 
p 

to £/. Conversely, let u be a real number such that 

y 
inwhich < ij > is a (decreasing) sequence in which ij+j < / y - 2 for each/ If \ij\ is not ultimately regular 
of the form •••, J, J - 2, J-4, J - 6, ••• then 

£''' 
/ 

is the r-expansion of \u |. If j ij t is ultimately regular of the form —, J, J - 2, J - 4, J - 6, ••• let /^ be the in-
dex such that // = J, i; +1 = J - 2, etc., and /'/ _ i > J + 2. Then 

7o Jo ' ' Jo ' 

io-1 . 

and the right-hand side of this equation is the r-expansion of \u |. 

Proof. The sequence \ip\ is decreasing by construction. If two integersip are consecutive, say ip = n 

and iPo+j = n - 1, then 
Po Po 

s ( u - J ^ r i p ) = n - J and j " " ' < ( / - £ > . 
P=1 P=1 

Adding rPo = rn to both sides gives 
Po-i . 

T"-1 + T" < £ / - ] £ T'P • 
P=1 
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Because rn 1 +rn = rn+ \ this gives 
Po-1 . 

Tn+1 <U~YS
 T'P 

P=1 
contradicting the definition of 

Po~1 

307 

("-E >) n = in. = s 
p=1 

Therefore, no two ip can be consecutive, so that/p^/ <ip- 2 for each/?. Thus for each/], 

/-/ 

P=1 

Either 
/-/ 

u - £ > 
p=1 

for some/, or else the sequence | / / i decreases t o - ~ ; in either case Y"* rp = u. 

p 
Now suppose that 

,(/| = YJ7'* r'j 

J 

in which ij+j < / / - 2 for each/. Then for each/7, 

Z i; in-2 in-4 in-6 

/>A7 

and the latter is a geometric series with sum rn . Thus if the sequence | ijY is not ultimately regular as 
stated in the theorem, for each n, 

Y, rj < rin~1. Therefore £ r'> < r'" + iin~1 = r''n+1 so ^ r ^ ) - / „ . 
j>n j>n j>n 

It now follows by induction that 

is the r-expansion of \u\. 
If 

J 

is ultimately regular as stated in the theorem, because r + r + r + ••• is a geometric sum equal to r 
the sum . „ 

y ^ r1 is equal to ^ J TJ + T , 

J 1=1 

and because // _/ > J + 2, this latter sum must be the r-expansion of \u\, by the part of the theorem already 
proved. 



308 THE ALGEBRA OF FIBONACCI REPRESENTATIONS [NOV. 

Theorem 3.8. The r-expansion of a real numbers is finite if and only if u is a quadratic integer in /. In 
this case the r-expansion of u is identical to the pseudo-polynomial in r determined by the canonical Fibonacci 
representation of Theorem 3.6. (A generalization of this result appears in [8].) 

Proof. On the one hand, Eq. (2.23) assures that any finite r-expansion sums to a quadratic integer in /. On 
the other hand, the pseudo-polynomial in r determined by the Fibonacci representation of Theorem 3.6 satis-
fies the conditions of Theorem 3.7 and must therefore be the r-expansion of u. 

Theorem 3.9. The usual ordering on the real numbers is identical to the lexicographic ordering on their 
r-expansions. 

Corollary. The lexicographic ordering on the canonical Fibonacci representations coincides with the usual 
real ordering on the quadratic integers they determine. 

We omit the proof of Theorem 3.9 because the proof is straightforward and the theorem is of a standard type. 
Canonical Fibonacci representations with negative upper degree are of interest because of their existence and 

uniqueness properties (Theorem 3.4) and because their consideration leads to a general existence and unique-
ness theorem for canonical Fibonacci representations (Theorem 3.6). Further study of the significance of the 
upper and lower degrees of canonical Fibonacci representations leads to additional existence and uniqueness 
theorems, and relates to the Fibonacci representations in the literature. 

Theorem 3.10. Let ^^kjfj be a positive canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then ^\kjfj has lower degree /-if and only if (m/r) + n e J r , where 

jr= l-JL C 
r \ 7r~1 ' „r+1 t 

if r is an odd integer and 

if r is an even integer. 

Proof. Let r be the lower degree of V * kjfj, so that 

f+l 
If r is odd, this expression is strictly greater than 

Tr 7r+2 Tr+4 , r ) - " Jr, 
and is strictly less than 

_ ± +-L + _1_ *... = _ ± + _L_ = _ _JL 
Tr Tr+3 7r+5 7r Tr+2 ^+1 

If r is even, the limits are similarly found to be 

—— and — - . 
T 7 

Therefore, for each integer r define Jr to be 

[ — , - —-~ ) if r is odd, f——-, ; ) if r is even. 
V Tr-1' Tr+1 I \T

r+1
 T

r-1 I 

Some of these intervals are shown in Fig. 3.2. 
As can be seen in Fig. 3.2, the intervals Jr are pairwise disjoint and cover all real numbers except 0 and those 

of the form -rn, n even and rn, n odd. We note that none of these numbers can be the conjugate of a pos-
itive canonical Fibonacci representation different from 0 since their conjugates are negative canonical. 
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r 

- 7 

-5 

-3 

-1 

1 

3 

5 

rodd 

Jr = \T~1'~~ r7^! 

(-T\-T«) 

(-T6,-!4) 

(-T4, -T2) 

(~T\-1) 

(-'-£) 
\ ~ ~T*'~~ T* j 

(-1-1) 
\ T4' T6 ) 

r 

-6 

-4 

-2 

0 

2 

4 

6 

reven 

Jr= [-^1'^TI 

(r*, r1) 

(r\ r5) 

(T,T*) 

(H 
[?'?) 

\ Ts ' T3 j 

I I I ) 
\ T7 ' r5 I 

Fig. 3.2 Some of the I ntervalsJr Determined by Theorem 3.10 

Thus we can see that if the lower degree of the representation is r then (m/r) + n e 7 r . If, on the other 

hand, (m/r) + n ^Jr, the lower degree cannot be other than r because^ n Jr= <p for s fi r. 

The previous theorem has a companion theorem whose proof is omitted for obvious reasons. 
Theorem 3.11. Let Y ^ kjfj be a negative canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then *ST kjfj has lower degree r if and only if (m/r) + n ^J'r, where 

J'r = 
1 T>-ir) ^r/-odd, J'r r+. 

T T 

_7_ 
,r+1 

for reven. 
T T 

Here are two more theorems whose straightforward proofs are omitted. 
Theorem 3.12. Let V * kjfj be a positive canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then V ] kjfj has upper degree p if and only if (m/r) + n<^Kp, where Kp = 

[rp, rp+ ) for each integer/?. 

Theorem 3.13. Let J^kjfj be a negative canonical Fibonacci representation other than 0 with associ-

ated quadratic integer (m/r) + n. Then Y ^ kjfj has upper degree p if and only if (m/r) + n e K'p, where K'p = 

(-rp+ , -rp] for each integer/7. 

According to Theorem 3.6, the canonical Fibonacci representation which determines (m/r) + n is positive 
canonical if and only if (m,n) e £ / u m and is negative canonical if and only if (mfn)^Lm u i/y. In con-
sideration of the case r = 0 in Theorems 3.10 and 3.11, we define subsets 7"; and T2 of the Fibonacci plane as 
follows: 

T-j = i(u,v) e P: - < dj(u,v) < r | n fc/u in), 
and 

T2 = \(u,v) <E P: -r < dj(u,vf < —~• } n &./// u iiV). 

Tj and T2 are shown in Fig. 3.3, and each is seen to be a half-strip with vertical thickness one. Using this fact 
and the fact that neither the boundary of Tj nor that of T2 can contain a point (m,n) with both m and n inte-
gers, one can conclude that for every integer m / 0 there exists a unique integer n such that (m,n)^ Tj u T2. 
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Fig. 3.3 The Regions T. and T2 

More precisely, if (m/r) + n^l, then 

(3.5) (m,n) e T/ if and only if m > 0 and n = [\(l + mh\], 

and 

(3.6) (m,n) e T2 if and only if m < 0 and /? = - 0 / 7 - WJTO . 

We thus obtain the following theorem. 
Theorem 3.14. Every non-zero integer w has a unique canonical Fibonacci representation with lower 

degree equal to 0. If m > 0 this representation is positive canonical, if m < 0 this representation is negative can-
onical. The integer 0 has exactly two canonical Fibonacci representations with lower degree 0; they are ±fg. 
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As an illustration of Theorem 3.14 we note that if m = - 6 condition 3.6 gives n = - 1 1 . The canonical Fib-
onacci representation which determines (~6/r) - 11 is -100101. (Section 3.4 describes an algorithm by which 
one can determine the canonical representation -100101. from the quadratic integer-(6/r) - 11.) 

The critical point in the proof of Theorem 3.14 is the selection of the set T7 u T2 in such a way that for each 
m there is one and only one/7 for which (m,n)^ T7 u T2 (which, incidentally, failed for m = 0). This depended 
on the fact that the width of the interval 7o was one, so Theorem 3.14 would fail for other choices of/: If r< 0 
the intervals are too wide, so that one could prove existence but not uniqueness, whereas if r > 0 the intervals 
are too narrow, so that one could prove uniqueness but not existence. 

However, anytime a set such as T7 u T2 can be found, having the property that for each integer m there is 
exactly one integer n such that (m,n) is in the set, a new theorem like Theorem 3.14 or Theorem 3.4 results. 
We shall dignify this observation by a definition after which we shall show how the usual Fibonacci representa-
tions in the literature result as special cases. 

Definition 3.4. Let S be a non-empty subset of Z. A subset U of the Fibonacci plane is said to hs se-
lective on S if for each m e S there exists one and only one /?eZ such that (m,n)^ U. For each m eSthe can-
onical Fibonacci representation which determines (m/r) + n, (m,n)^ U, shall be called the U-representation of 
m. 

For example, let 

J = u Jr, f = u fr, U1 = i (u,v) e P: ~ + v e J \ n (i, u m), 
=2 r=2 

and 
U2 = \ (u,v) ^.P: u- + v ^ f | n dm u tiV). 

Theorem 3.15. U-j u U2 is selective on the setZ* of non-zero integers. 

Proof. We note that each of U1 and U2 is a strip on either side of L1 with a sequence of lines removed, 
since U7 consists of those points (u,v) in £ / u £// for which -(1/r2) <di(u,v) < (1/r) but di(u,v)^ (1/rk) 
for k odd positive, d-j (u,v) £ ~(1/rk) for k even positive and d-j(ufv) ? O, and U2 is of similar structure. The 
vertical thickness of each of the strips U1 and U2 is 1. Moreover, none of the missing half-lines can contain 
(m,n) in Z * x Z, as can be seen from the following type of argument. If m and n are integers and d-j (m,n) = 
(1/rk), k odd and positive, then (m/r) + n = (1/rk) so that (m/r) + n = -rk » - (fk/r) - f^+i by Eq. (2.23). 
Thus (m,n) = (-f/<, -fk+1) which is not in £/ u £//. Other cases follow similarly. 

It is therefore clear that U 7 is selective on the positive integers and U2 is selective on the negative integers. 
We leave it to the reader to show that there is no possibility of the union Uf u ^/^ failing to be selective near 
the origin as a result of vertical overlap. 

It is not difficult to show that if (m/r) + n^l, then for m > O 

(3.7) (m,n) e= U7 u U2 if and only if n = [\(1 +m)r\] - 1 

and for/77 < O, 

(3.8) (m,n) e U7 u U2 if and only if n = -[\(1 - m)r\] + I 

Theorem 3.15 has the following corollary. 

Corollary. Every non-zero integer has a unique canonical Fibonacci representation with lower degree 
greater than 1. For 0, no such representation exists. 

Of course these are the well known Zeckendorff representations which have been extensively treated in vari-
ous contexts [1 , 2, 3, 4, 5, 6, 11]. Because their properties are well known we shall not discuss them further at 
this point We note in passing that this corollary follows immediately from Theorem 3.14 by the removal of the 
7*0 term in each of the canonical representations of lower degree zero. 

Other choices of selective sets produce other interesting classes of representations. We describe some of them 
by way of the following theorems whose proofs are omitted in the interest of brevity. 
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Theorem 3.16. Every non-zero integer has a unique canonical Fibonacci representation with positive, 
odd lower degree. For each non-zero integer /T? the quadratic integer determined by this representation is (m/r) 
+ n, where 
(3.9) n = [\mr\] \1 m > 0, 

(3.10) n = -[\-mr\] if m < 0. 

These are the so-called second-canonical representations appearing in [5] . 

Theorem 3.1 7. Every integer/w has a unique positive canonical Fibonacci representation with upper de-
gree 1. For each integer m the quadratic integer determined by this representation is (m/r)+n, where 

n- h (3.11) + 1. 
T 

As examples, we note that for /?? = -7, n = 6 and (-7/r) + 6 is determined by 10.000001; form = O, n = 2 
and (0/T) + 2 is determined by 10.01. 

Theorem 3.17 has an obvious counterpart in terms of negative canonical Fibonacci representations which we 
shall omit. 

Theorem 3.18. Every integers? has a unique positive canonical Fibonacci representation with upper de-
gree either 0 or — 1 . For each integer m the quadratic integer determined by this representation is (m/r) + n, 
where 
(3.12) n = - [ l^f- ' j j • 

Once again the theorem has a counterpart in terms of negative canonical representations. 
The theorems we have listed here give the consequences of some of the most obvious choices of the selective 

sets. It is clear that many other possibilities exist and that the general selective set does not necessarily relate to 
upper and lower representational degrees. 

We conclude this section with an interesting decomposition theorem which is an immediate consequence of 
the foregoing results on canonical Fibonacci representations. The theorem is stated only for the half-plane £ / 
u £//, but has at least one obvious extension to the entire Fibonacci plane. 

Given any lattice point (m,n) e £/ u £//, the quadratic integer (m/r) + n is determined by precisely one posi-

tive canonical Fibonacci representation V** k/f,-. This representation naturally decomposes into the sum of 
terms with nonnegative indices and the sum of terms with negative indices; in positional notation this corres-
ponds to the portion to the left of the point and the portion to the right of the point. 

With only one restriction, any positive canonical Fibonacci representation with nonnegative lower degree can 
be added to any positive canonical Fibonacci representation with negative upper degree to yield a positive can-
onical Fibonacci representation; the exception is of course the case of zero lower degree and - 1 upper degree. 

If we consult Theorems 3.10 and 3.12, we find that the positive canonical Fibonacci representation which de-
termines a lattice point (m,n) e £ / u £// ; 

has nonnegative lower degree if and only if — 1 < di(m,n) < r, 
has lower degree zero if and only if (1/r) < di(m,n) < r , 
has negative upper degree if and only if 0 < d2(m,n) < 1, 

and 
has upper degree = - 1 if and only if (1/r) < d2(m,n) < 1. 

Therefore, let U1 denote the semi-strip 

U-i = | (u,v) e i/ u JC/ / / -7 < di(u,v) < r Y 

let U'i denote the sub-semi-strip 

Ul = | (U,V) <E £/ U £/ / ; (1/r) < di(il,v) < T j , 

let U2 denote the semi-strip 
U2 = | (u,v) G £/ u £// :0 < d2(u,v) < / | , 
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and let U'2 denote the sub-semi-strip 

U'2 = \ (u,v) e £ / u in: (1/T) < d2(u,v) < 1 ) . 

Then we have the following theorem. 

Theorem 3.19. Every integer pair (m,n) e £/ u £// can be decomposed into the sum of an integer pair 
in U1 and an integer pair in U2. This decomposition continues to exist and becomes unique in the presence of 
the restriction that the summands not lie one in (J^md the other in U'2. 

3.4 The Resolution Algorithm 

We have seen that every Fibonacci representation determines a quadratic integer which in turn is determined 
by a unique canonical Fibonacci representation. In this section we present an algorithm for passing from any 
Fibonacci representation to the canonical representation determining the same quadratic integer; we call it the 
resolution algorithm. 

Let W be the class of Fibonacci representations T^A/ / / in which k; > 0 for all i. We begin by defining the al-

gorithm and proving its convergence on W. 

Given a Fibonacci representation /^jk/f/, a pair (kj, k^-j) of consecutive coefficients shall be called a signifi-
cant pair if it is not of the form (1,0) or (0,/?). It is clear that a Fibonacci representation in Wfails to be canoni-
cal if and only if it contains a significant pair. In any non-canonical representation the significant pair (kj, kj. 7 ) 
with largest index / is called the first significant pair. 

On the class W the resolution algorithm consists of the repetition of the following operation 12 on the first 
significant pair: (i) if both members of the pair (kj, k,--i) are positive, replace kj+j by A/* 7 + k, replace Ay by 
A / - A and replace A/_7 by A/_7 - A, where A is any integer satisfying 0 < A < min j A/, A,_71 ; (ii) if one mem-
ber of the pair is zero (it must be A/_7 since the pair is significant) replace A, by A / - / , A,_7 by/and A/_2by 
kj-2 + i where/ is any integer satisfying 0 < / < A,, and then immediately apply (i) to the new first significant 
pair (kj - j, j) obtaining k;+ 7 + A, A / - / - A, / - A and A/_2 +j as the final replacements for A/-/-7, A/, A/_7 and 
A/_2, respectively, where, as required in (i), A is any integer satisfying 0 < A < min \ k; - j, j \. 

As explained in Section 3.2, operations (i) and (ii) will not alter the quadratic integer determined by the rep-
resentation. A convenient choice for A in operation (i) is the largest, i.e., A = min \k,-, A/_7> and a convenient 
choice for/ in operation (ii) is the smallest, i.e.,y = /, which changes Ay*7, A/, A/_7 and A,_2 to A,-* 7 + 1, kj - 2f 

0 and A/_7 + 1, respectively. The reader will discover that these convenient choices are not necessarily the most 
efficient, but we shall not be concerned with that problem at this time. We establish the convergence of this 
algorithm after looking at two brief examples. 

Example 1. Find the canonical Fibonacci representation which determines the quadratic integer (3/T) + 2. As 
a pseudo-polynomial in r this has positional notation 2.3. Applying operations (i) and (ii) as required and using 
the choices for/ and A suggested as convenient, we obtain 

2.3 = 20.1 = 100.2 = 101.001. 

Example 2. Determine the canonical representation of 6 given by Theorem 3.16. Since [|6r|] = 9, we form 
(6/r) +9 and obtain 

9.6 = 63. - 330. = 3000. = 11010. = 100010. 

Consider a Fibonacci representation^ V * k/f,- in W and let WQ be the subset of those representations in W 

which determine the same quadratic integer as does y^A/ / / . Order M/̂  lexicographically on the positional no-
tations of its members (with points aligned) and observe that the operator £2 sends any non-canonical member 
of WQ to another element of WQ which is strictly greater in the lexicographic ordering. 

Now for any integer r the number of representations in WQ having lower degree greater than or equal to r is 

finite. For if K is an integer such that r > Y^ / "?" ' and if N is; an integer such that Nrr > £^ /r/r7,then 
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every representation in WQ must have upper degree less than K and every coefficient less than N making the 
total number of possibilities less than or equal to N(K - r). 

Thus if we begin with a representation 2 J / 7 / ; in WQ and apply the operation 12 repeatedly, after finitely 

many steps we must arrive a first time at a representation £_, kffj which is either canonical or else has the 

property that the application of 12 to ^ kffj necessarily produces a representation with lower degree less than 

that of y j kjfj. A finite sequence of representations in ̂ p roduced by starting with ^ J klfl and repeatedly 

applying 12 until arriving at such a representation / Jkffj shall be called an 12 -cycle. 

Theorem 3.20. Let "ST" kjfj and Y^Arf/y be the first and last representations of an 12-cycle, and let /* 

be the lower degree of Y^Ar///. Then if ^ jAr f /y is not canonical, it either has first significant pair (kf, k*,-j) = 

(n,0) with n > 1 or first significant pair (kf+ /, kf) = (n,0) with n > 1. 

Proof. If £jkffj is not canonical, then the application of 12 must necessarily lessen the lower degree to 

less than r, and the lower degree of ^ kffj must still be greater than or equal to r since, by the definition of 

an 12-cycle, / Akffj must be the first representation encountered for which the application of 12 produces 

lower degrees less than r. Now of operations (i) and (ii), only (ii) can lessen the lower degree, and when (ii) is 
applied to a first significant pair (kle kj-j) it alters only kj+j, kt, k;-i, and k,-2- It follows that the first sig-
nificant pair of £^kff/ must be of the form (n,0) with n > 7, since otherwise (i) would apply instead of (ii), 

and that the position of this first significant pair must either be (k*, kf-i) or (kf+i, kf), since the application 
of (ii) to pairs positioned further to the left cannot alter kf for /<r, and pairs further to the right cannot be 
significant. 

Intuitively, Theorem 3.20 says that the last representation in an 12-cycle is canonical except possibly for hav-
ing an integer greater than 1 in the rightmost non-zero position. 

Theorem 3.21. Let 2^k-,fj and 22s kffj be the first and last representations of an 12-cycle. Then 

/ J kffj is independent of the various possible choices for k and/in alternatives (i) and (ii) for 12. That is, all 

12-cycles beginning with Y"* kjfj terminate with 7^kf f j . 

Proof. Consider two 12-cycles with first representation Y ^ Ar/f,-. Let them have last representations 

/ J kffj and £mmlikf*fj. In accordance with Theorem 3.20, we distinguish six cases: (a) (kf, k*.j) and (kf*, 

k?*i) are both first significant pairs, (b) (kf+j,kf) and (kf+j, kf*) are both first significant pairs, (c) (kf, kf-j) 
and (kf+1, kf*) are both first significant pairs, (d) (kf+1f kf) and (kf*, kf*i) are both first significant pairs, 

(e) precisely one of the two representations Y ^ kffj and Y ^ kf*fj is canonical and finally (f) both of the rep-

resentations /] kffj and YjAr**/;. a r e canonical. 
In case (a) let (k*, kf.j)= (n*, Wand (kf*, kf*i) = (n**, 0) wherein n* and n** are integers greater than 1. 

Then we write 

^kfr1 = ^ kfr1 + n*rr 

i>r+2 

and similarly 

Y,kf*r''= ] T kf*ri + n**rr. 
i>r+2 

S m c e S ^ / a n d S kf*ftare D O t n m ^ 0 , the sums ] T ] kfr1 and Y ^ k**r' are equal. We therefore have 
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E k?*ri- E W = (n*-n**)rr; 
i>r+2 i>r+2 

and taking conjugates on both sides, 

E k**Ti- E kfr'1 = (-1)r(n*-n**h'r 
i>r+2 i>r+2 

Now 

E ^ and E k?*fi 
i>r+2 i>r+2 

are positive canonical Fibonacci representations with lower degree >r+2. Referring to Theorem 3.10, we deduce 
that 

E ktfi and E krfi 
i>r+2 i>r+2 

must both lie in the interval 

if r is odd and in the interval 

if r is even. In either case, 

7 7 
Tr+1'' Tr+2 

I--J- JL) 
\ r+2' r+1 J 

E **v '- E kiT' 
i>r+2 i>r+2 

must lie in the interval f '- _L \ so that 
\ Tr Tr I 

-r~r < (-1)r(n*-n**)r-r < r~r. 

This clearly givesn* = n**, making 

E k/r' - E **v. 
i>r+2 i>r+2 

By the uniqueness of canonical representations, 

E ktfi and E ***>; 
/>/^-2 />/-f2 

must be identical and hence the theorem is proved for case (a). 
Case (b) is clearly equivalent to case (a) by a shift 
In case (c) let (k*, k*-i) = (n*, 0) and (k?+i, k**) = (n**, 0). Then by similar reasoning we get successively 

E k**r''- E k*rl = -n**Tr+1+n*Tr 

i>r+2 i>r+2 

E k**T'- E kf7' = (-1>r(n**T-r-1 +n*T~r), 
i>r+2 i>r+2 
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_ JL < (_1}r n?5ZL±nl < JL »21. + n* < I 
Tr Tr Tr ' T 

Since n** and n* must both be greater than 1, this is impossible, so that case (c) cannot occur. 
Case (d) is clearly equivalent to case (c) by an interchange of symbols. 
The calculations for cases (a) and (c) can be applied as well as when either n*= 1 or 0 or n** = 7 or 0 to show 

that if one of the two representations V ^ kffj and \ \ kf %' 's canonical, so is the other. The uniqueness 

theorem for canonical representations then takes care of case (e) and case (f), as well. 

Corollary. Let ^ ^ / / / and Y ^ / / / be two Fibonacci representations which determine the same quad-

ratic integer and which have the same lower degree. Then any 12-cycle which begins with YV/Z/ tnust end 

with the same representation as does any 12-cycle which begins with y Y / / ; . 

Proof. The proof of Theorem 3.21 uses only the properties that the last representation of the 12-cycle is 
in WQ and has the same lower degree as the first; the actual values of the k; are immaterial. 

Corollary. Let '^\kffj be the last representation of some 12-cycle, and suppose that Y * kffj is not can-

onical. Apply 12 to Y * kffj to obtain a new representation of lesser lower degree. This new representation be-

gins a new 12-cycle whose last representation is independent of the choice of /r and/ in (ii) when reducingthe 

lower degree of ^2^ffj. 

Proof. Any choice fork and/in (ii) will send Y * kffj to a representation of lower degree exactly two smaller 

than that of Y ^ / % - Moreover, since all such representations continue to represent the same quadratic integer, 

the preceding corollary assures that all consequenti2-cycles must terminate in the same representation. 

Theorem 3.22. Let j[\kffj be the last representation of some 12-cycle. Suppose Y * kffj is non-

canonical and let it have first significant pair (n*, 0). Apply 12 to Y * kffj to generate a new 12-cycle with last 

representation Y ^ kf*fj- Let (n**, 0) be the first significant pair in Y\kf*fj if the latter is non-canonical. 

Then/?**< #/7* 

Proof Since / J kffj ends an 12-cycle, the last non-zero pair of consecutive integers in the positional 

notation for y ^ kffj must be 0, n*. Applying (ii) w i th /= 1, k= 1, these two integers and the two following on 

the right become 7, n* - 2, 0, 1. At this point everything to the left of these four positions is canonical in the 
sense that it contains no significant pairs. If the position immediately to the left of these four contains a 1, then 
it, together with the 1 to its right form the new first significant pair and these two ones are replaced on the next 
step by a new 1 in the first position to the left of the pair. If this 1 is adjacent to another on its left, this pair is 
now the first significant pair and is replaced by a new 1 in the first position to its left, and so forth. This process 
continues until the new 1 stands alone, in which case the resultant representation ends in 0, n* - 2, 0, 1 with 
no significant pairs to the left of these four positions. On the other hand, if for the last four significant posi-
tions /, n* - 2, Of 1 no 1 appears immediately to the left of these four positions, (In*- 2) becomes the first 
significant pairso the last four significant positions become, upon the next application of 12 with k= 1, 0, n* -
3, 0, I The new 1 which now appears immediately to the left of these four positions behaves as just described, 
moving to the left each time it pairs with another 1 immediately to its left, the process terminating when the 
new 1 finally stands alone. At this point the representation terminates with 0, n* -3, 0, 7 with no significant 
pairs appearing to the left of these four positions. 

In either case, the next application of 12 calls for operation (ii), for which we once again select/ and k= 1. 
By an exact repetition of the arguments just presented, we see that after finitely many applications of 12 we 
arrive at a representation of the form Q, n* - k2, 0, 2 with no significant pairs to the left of these four posi-
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with km > 2m and no significant pairs to the left of these four positions. When finally n* - km = 0 or / the 
end of the $1 -cycle has been reached, and the representation ends in either Q, 1, 0, m or 0, 0, 0, m. Also/7*-
km < 7 and km > 2m. This gives/77 < 1/2km with km = n* or km = n* - /and the theorem is proved because 
the last representation of the 12-cycle does not depend on our particular choices for / and k in the various 
applications of £2. 

Corollary. For each Fibonacci representation Y ^ k/f,-^ Wthe resolution algorithm converges in finitely 

many steps to the canonical representation determining the same quadratic integer. 
To extend the resolution algorithm to the general case, we show how every other case can be reduced to the 

case of representations in W. 

Let \ * kjfj be a Fibonacci representation with upper degreep and lower degree r. Sf p - r> 2, eliminate kp 

by adding it to each of kp-f and kp-2- This does not alter r but reducesp by at least one and thus reduces/? -
r by at least one. Clearly by repeating this process finitely many times the Fibonacci representation can be re-
duced to one containing at most two non-zero coefficients, and these will be adjacent. If these two numbers are 
both nonnegative, or if at any point prior to arriving at this pair all of the coefficients become nonnegative, one 
should revert to the resolution algorithm as defined for representations in W. If these two numbers are both non-
positive, or if at any point prior to arriving at this pair all of the coefficients become non-positive, one should 
factor a minus sign to the front of the entire representation and then treat as in the case of W, the minus re-
maining in place during the remaining operations. 

Therefore we may assume that we have arrived at a Fibonacci representation containing exactly two non-zero 
coefficients which are adjacent and such that one is positive and the other is negative. Let this pair of coef-
ficients be a, b. If we continue the operation of eliminating the first member of the pair by adding it to each of 
the two positions immediately to its right we obtain successively the pairs 

(a,b), (a+b,a), (2a + b,a + b), (3a +2b, 2a +b), (5a + 3b, 3a + 2b), - . 

The pairs (a,b), (a + b, 2a + b), (3a + 2b, 5a +3b) belong to the embedding %((b - a)J + ao(lj) defined by Eq. 
(2.35). Because of the orientation of the flows as seen in Fig. 2.4, the ratio of the second to the first term in 
each pair must eventually become positive and remain so (approaching r) and therefore we must eventually ar-
rive at a pair in which both members have the same sign. At this point we may proceed as indicated previously. 

Thus the entire resolution algorithm is seen to proceed in the following phases in the general case: 

Phase I: Reduce the representation to a pair. 
Phase I I : Continue reduction until like signs are obtained. 
Phase I I I : Factor our minus signs and apply U, repeatedly. 

It is perhaps worthwhile to present one worked-out example. 

20(-7).046 = 2(-5).046 = (-31.246 = .(-1)16 = .005 = .01301 
= .10201 = .11002 = 1.00002 = 1.0001001 . 

The reader can verify that the first and last representations (and all those in between) determine the quadratic 
integer ( 1 0 / r ) - 5 . 

This algorithm now makes possible an arithmetic for the canonical Fibonacci representations. One performs 
the standard algorithms and interprets them as in Section 3.2 and then resolves the results to make them once 
again canonical. In this way we obtain our final theorem in this section. 

Theorem 3.23. The canonical Fibonacci representations form a ring in the usual arithmetical algorithms, 
followed by resolution. This ring is isomorphic to the ring / of quadratic integers in Q[T] under the mapping 

which sends each canonical representation ^ kjfj to the quadratic integer which it determines, namely 
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The canonical representations of zero form a subring which is isomorphic to the ringZ of ordinary integers 
under the left shift 

Hkifi-Yjki-ifi • 
This ring is actually a linear algebra over Z in the obvious way; hence the title of our paper. 

3.5 Applications in^Y and F. 

As explained in Section 2.6, each sequence£.G/V goes over to the quadratic integer (xQ/r) +xx under the iso-
morphism $_o <£,and moreover, the left shift in ^corresponds to multiplication by r i n /. In positional notation 
(x0/r) + xx is denoted by A^ .X0 which representsxQ, and multiplication by r p r o d u c e s * ^ , which represents 
x1 ; etc. Thus we see that successive terms in x are represented by successive shifts of each Fibonacci representa-
tion forx0 which determines (X0/T) +xt. (For the particular representation xx.xQ this amounts to a restate-
ment of Eq. (2.6).) There is for the quadratic integer (xQ/r) +xx a unique canonical Fibonacci representation in 
the sense of Theorem 3.6. This representation signifies a finite sum of multiples of 1.0 by non-consecutive 
powers of r, which corresponds in X to a finite sum of non-consecutive shifts of J, since f o ̂ > sends/to 1. 
Hence we obtain the following theorem. 

Theorem 3.24. Every Fibonacci sequence x_e X is uniquely expressible as a signed finite sum of non-
consecutive shifts of the sequence/of Fibonacci numbers. The appropriate sum is precisely that indicated by 
the sign and shifts of 1. appearing in the canonical Fibonacci representation which determines the quadratic 
integer^ o 0 W = (x0/r) + xx. Furthermore, the canonical representation^ o(p(x] representsx0 and successive 
left or right shifts of this representation yield representations for the terms of * given by the corresponding 
shifts in X 

An example of this theorem appears in the principal introduction (Section 1). As pointed out in the introduc-
tion, the second statement in this theorem appears in [14] for nonnegative Fibonacci sequences and in [8] and 
[13] for more general sequences. 

Thus each Fibonacci sequence, when appropriately represented "in Fibonacci" consists of consecutive shifts 
of a basic block of ones and zeroes, and two sequences are made up of shifts of the same basic block if and only 
if each sequence is a shift of the other, in which case we say that the two sequences are equivalent. It is clear 
that this equivalence is a true equivalence relation in which each equivalence class determines a signed basic 
block of zeroes and ones, and vice-versa, 

Theorem 3.14 provides a ready-made enumeration of these equivalence classes if we agree to distinguish be-
tween - 0 and 0 for purposes of listing. For every basic block can be so shifted as to have lower degree zero, so 
every Fibonacci sequence \nX_ is equivalent to exactly one which under f o 0 is determined by a canonical rep-
resentation of lower degree zero, and by Theorem 3.14, there is an exact correspondence between the set — 2 , 
- 1 , - 0 , 0, 1, 2, 3, ••• and the canonical representation of lower degree zero. Thus for each m = ±0, ±1,.±2, ••• 
we can refer to the mf equi vale nee class in X 

In Fig. 3.4 we list for several values of m the pair (m,n) with n = [\(m + 1)r\), the canonical Fibonacci repre-
sentation of lower degree zero which determines the pair (m,n) and some of subsequent terms of the embedding 
of the Fibonacci sequence in the flow passing through the point (m,n). Flow constants are also given for later 
reference. 

The reader will perhaps notice that the canonical representations increase in strict lexicographic order in the 
sense that they increase with no omissions within the class of canonical representations of lower degree 0. This 
can be proved easily from Eq. (3.5), the corollary to Theorem 3.9 and Theorem 3.14; however it is also an 
immediate consequence of the known properties of the Zeckendorff representations and their simple connec-
tion with the canonical representations with lower degree zero. 

At this point we can see that the pairs appearing in the right-hand column of Fib. 3.4 are the Wyth off pairs as 
defined in [17] and discussed in [5, 17, 18, 19]. For given any pair (a,b) in this column, let/? - a = k. Then 
(k.a) is determined by an odd shift of the canonical Fibonacci representation appearing in the same row as (a,b), 
so (k,a) is determined by a canonical Fibonacci representation of positive, odd lower degree. By Eq. (3.9) we 
have a= [\kr\], so that/7 = a + k= [\kr + k\] = [\kr2\]. Since the left shifts of the canonical representations of 
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(m,n) 

(0,1) 
(1,3) 
(2,4) 
(3,6) 
(4,8) 
(5,9) 
(6,11) 
(7,12) 
(8,14) 
(9,16) 

(10,17) 
(11,19) 
(12,21) 
(13,22) 

i (14,24) 
(15,25) 

Flow 
Constant 

1 
5 
4 
9 

16 
11 
19 
11 
20 
31 
19 
31 
45 
29 
44 
25 

Canonical 
Representation 

1. 
101. 

1001. 
10001. 
10101. 

100001. 
100101. 
101001. 

1000001. 
1000101. 
1001001. 
1010001. 
1010101. 

10000001. 
10000101. 
10001001. 

Subsequent Points of I 
Embedding in Fibonacci Flow 

(1,2), (3,5), (8 ,13) -
(4,7), (11,18), (29,47), -
(6,10), (16,26), (42,68).- I 
(9,15), (24,39), (63,102)-
(12,20), (32,52), (84,136) •-
(14,23), (37,60), (97,157) -
(17,28), (45,73), (118,191)-
(19,31), (50,81), (131,212) •• 
(22,36), (58,94), (152, 246) -
(25,41), (66,101), (167,268) 
(27,44), (71,115), (186,301) 
(30,49), (79,1281,(207,335) 
(33,54), (87,141), (228,369) 
(35,57), (92,149), (241,390) 
(38,62), (100,162), (262,424) -
(40,65), (105,170), (275,445) -

Fig. 3.4 Some Data on the Equivalence Classes in X 

lower degree zero must represent positive integers, and since ([\kr\], [\kr2\]) is known to be the k Wythoff 
pair for each k, the right column contains only Wythoff pairs. But by the corollary to Theorem 3.15 and the 
fact that all possible basic blocks occur in the table, every positive integer must occur somewhere in the right 
column and therefore all Wythoff pairs must be present. 

It now follows from the discussion in [17] that the first pairs appearing in the right column are the primitive 
Wythoff pairs (defined in [17]). If we throw in the negatives of the primitive Wythoff pairs and the pair (0, 
0) and refer to this larger collection as the primitive Wythoff pairs, we obtain the following generalization of 
the results in [17]. 

Theorem 3.25. Every Fibonacci sequence in X is from some point forward identical to the sequence 
initiated by a primitive Wythoff pair, and for non-equivalent sequences these primitive Wythoff pairs are 
distinct. 

Thus the primitive Wythoff pairs furnish a system of representatives for the equivalence classes in X just as do 
the pairs in the first column of Fig. 3.4. 

Our last theorem in this section is the only application of canonical representations to_f. While it is too ob-
vious at this point to require proof, it is of sufficient interest to be stated formally. 

Theorem 3.26. Every equivalence class in the quotient ring F contains a unique pseudo-polynomial 

5 3 Ar/X' for which either krf 0 implies k\ = 1 or else krfQ implies k, = -1 and for which kjki+1 = 0 for every 

i. Foreach equivalence class this pseudo-polynomial is precisely the one associated with the canonical Fibonacci 
representation which determines the image of the equivalence class under the isomorphism^. 

For example, the equivalence class [2\2 + X"1 - X~3/ i n / goes to 2r2 +r~l - T ~ 3 under j \ By the resolu-
tion algorithm (and a shortcut) 

200.10(-1) = 200.01 = 1001.01 

so that [2\2 + X-1 - X"37 = A 3 + 1 + X-27. 
4. THE FIBONACCI FLOWS 

4.1 Introduction 
In this section we consider properties of the Fibonacci flows such as which integers are flow numbers, how 

many non-equivalent sequences are embedded on a given flow and how the embeddings situate with respect to 
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one another on a flow. Much of this material comes out in a standard way from the analysis of representations 
by quadratic forms, such as can be found in [16]. In these cases we simply provide a statement of the results. 

4.2 The Flow Constants 

Suppose v0 £ 0 is a flow constant for some* eX_so that by Eqs. (2.28) and (2.36) 

(4.1) v0 = x\ -xxxQ -xl 

for the pair (x0, xj of integers. Thus the flow constants vfor sequences in X are precisely those integers which 
are represented by the indefinite quadratic form x\ - xxxQ - x2

0. This form has discriminant 5, and since all 
forms of discriminant 5 are equivalent under unimodular transformations, by the standard reduction of the 
problem of representation to that of equivalence we find that the integers v having primitive representations by 
the form x\ - xxx0 - x2

Q are precisely those for which the quadratic congruence 

(4.2) M 2 = 5 mod 4I^I 
is solvable. Using quadratic reciprocity we obtain the following theorem. 

Theorem 4.1. The positive integers having primitive representations by the indefinite form x\ -x0x1 -
xl are those of the form 

(4.3) v = 5^ -..plk 

in which 0 = 0 or 1 and pu —, /?/. are distinct primes, each of which is congruent either to 1 or 9 modulo 10. 
Those integers which are flow constants for sequences in X_MQ therefore all numbers of the form ±k2v, wherein 
v is given by Eq. (4.3) and k is an arbitrary integer. 

We deliberately allow the case k = 0 in Theorem 4.1 to account for the zero sequence in X. The reader is re-
ferred to Fig. 3.4 for some data on the flow constants. 

4.3 The Em bed dings 

Having established the form of the flow constants it is natural to inquire as to how many and which embed-
dings occur on a given flow. For each given flow constant all of the embeddsngs on that flow can be computed 
by the method of reduction of quadratic forms. In this connection we point out that the automorphs of the 
form x\ - xxxQ - x2

Q are the linear transformations given by matrices of the form 

t* »\ +1 f2n~1 f2n \ ^ I f2n~1 ~f2n-2 \ 
( 4 ' 4 ) ~(f2n f2nJ-±[f2n -f2n-l) 

in which n is an arbitrary integer. The reader will have little difficulty in showing that if (x 0, xj is a representa-
tion for some number v by the form x\ - xxx0 - x\, then the other representations of v generated from (x0, 
xj by these automorphs are precisely the other points of the embedding of fxx - xQ)_l+x0oW, their nega-
tives, their conjugates, and the negatives of their conjugates. 

Thus in any given case one determines the solutions for / io f the congruence 4.2 such that 0 < / i < 2\v\> ar|d 
then determines for each solution, by reducing the corresponding equivalent form, a primitive representation 
(xu x0) which then generates by 4.4 its embedding, the negative of its embedding and the conjugates of these. 
In addition, non-primitive representations will arise if the prime power factorization of \v\ contains exponents 
greater than or equal to 2. For by factoring/?2 from vand determining primitive representations for v/p2, say 
(uQ, uj, we obtain the non-primitive representations (pu0, puj for v. Since the automorphs 4.4 generate only 
primitive representations from primitive representations, the non-primitive representation (puQ, puj and all 
the other representations determined from it by the automorphs 4.4 are necessarily distinct from all of the 
primitive representations. An extension of this argument shows that if the squares of two distinct primes occur 
as factors of \v\ then the corresponding non-primitive representations are distinct. It follows that there is no up-
per limit to the number of non-equivalent embeddings that can lie on the same flow. 

As an example consider the flow constant 121. The solutions of JJ2 = 5 mod 484 with 0 < fi< 282 areju = 
73,169 mod 484. These determine the equivalent forms 12UJ + 73^'xo +11xJ and 12k 2 + 169*^0 +59x2. 
By reducing these two forms we determine the primitive representations (-3, 10) and (-7, 10), respectively. 
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The only square factor of 121 is 121 itself, so the non-primitive representations of 121 will be given by multi-
plying by 11 the primitive representations of 1. The solutions of \x2 = 5 mod 4 with 0 <JJL< 2 areju = lon ly , 
giving the equivalent form x\ + xxx0 - x2

0. This form is already reduced and determines the primitive repre-
sentation (0,1), which gives the non-primitive representation (0, 11) of 121. If we note that the embedding con-
taining (-7, 10} has for its next point (3, 13) which in turn has as its conjugate (-3, 10), we can state that the 
only embeddings on flow 121 are, up to equivalence (i.e., shifts) those of the sequence 1Tf-7o(f),\ts negative, 
its conjugate, the negative of its conjugate and similarly for 1U However 11/is self-conjugate so the total num-
ber of non-equivalent sequences embedded on flow number 121 is 6. 

The next theorem shows that the number of non-equivalent sequences on a given flow can be simply com-
puted from the ordinary prime factorization of the flow constant, without actually determining the embedded 
sequences. Let PQ be an arbitrary non-zero flow constant and let the prime factorization of v0 have the form 

(4.5) *,=±f%Vp?--:&kl7'Z2 •••<!?'' 
in which p1f P2, —, Pk are the prime factors of VQ which are congruent to 1 or 9 modulo 10, and q-j, q2,~, 
qj are the other prime factors of VQ different from 5. Note that by Theorem 4.1 each of the exponents m 1,1112, 
•", rrij is even, say m,- = 2r,, i = 1, 2, —,/. 

Theorem 4.2. Let v0 be a non-zero flow constant which factors as in 4.5. Then the number of non-
equivalent Fibonacci sequences \nX embedded on the flow v(x)= vQ is equal to 

2(1 + n1)(l + n2)-(l+nk). 

Proof. We shall use the following known facts from elementary number theory: (1) Zfr] is a unique fac-
torization domain, (2) if n is a positive integer which is not a square then \fn^ Zfr] if and only if the square-
free part of n is 5 and (3) the units in / = Zfr] are exactly the elements ±rn, n = 0,±1, ±2, •••. 

The first step of the proof is to establish that the natural integers which are prime in / are precisely the natural 
primes which are not 5 and are not congruent to 1 or 9 mod 10. Clearly Theorem 4.1 precludes any other pos-
sibilities for the primes in /. On the other hand, we now show that if p is any natural prime which factors non-
trivially in /, then the factorization of p is necessarily of the form p = ±aa, with a and a prime in /. From this 
it will follow, again by Theorem 4.1, that each natural prime not 5 or congruent to 1 or 9 mod 10 is prime in /. 

Suppose pte a natural pnme which factors in / as/7 = a|3, when neither a nor fi is a unit in/. Then also/7 = a 7? 
so/72 =aaj3ft and thus aa= ±$$= ±p. Hence a and j3have prime norm and therefore are prime in /. Since/ is a 
unique factorization domain, either |3 = ua where u is a unit in / or fi = uawhere u is a unit in /. If j3=£7athen 
we have/7 = a$ = uaa.Since aa is an integer, necessarily u = ±1 giving the desired result: p = ±aa. If ]3= t/athen 
p = ua2 = Ua2 so that a= va for some unit v since / is a unique factorization domain. This givesp = uvaa, and 
since uv is a unit in /, we are back to the previous case. 

The next step of the proof is to show that if a natural prime p is a non-prime in / with prime factorization p = 
faoiin/, thence is an associate of a if and only if p = 5. For if p = 5 we have 5 ( 2 r - 1)2 and 2r — 1 = - ( 2 r - 1), 
On the other hand, if ~a = ua where u is a unit in /, then/7 = iaa = ±ua2 = ±Tia2 and so/72 = uu(aa)2, whence 
uu= 1. Now a unit u is of the form ±rn, so u~\s±(-1)nT~n. Therefore uu~= (~1)n showing that/? is necessarily 
even, say n = 2k. This gives 

u = ±r2k, p = ir2ka2 =Mrka)2. 
Since all members of / are real we have p = (rka)2 whence yjp e /. But/7 is prime, so p = 5. 

Having dispensed with these technicalities we can now complete the proof. Let v(x]= v(xQ, xx) = v0, so that 

«.{*.,) (f77.). 
Let the prime factorization vUxQ/T) + xx in / be 

— +x, = a.a2 •'•Oo, 
SO 

)( _ 
-? + xx = axa2 •••aSr 
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and 
(4.6) VQ = (aicij)(d2&2) - (as&s) 
the latter necessarily being the prime factorization of v0 into natural primes. 

On the other hand, by Eq. (4.5) 

Each q; is prime in / and each p,- factors by Theorem 4.1 as/7/ = j/y,-, each factor being prime in /. We have seen 
that 5 factors a s - ( 2 r - 1 ) ( 2 r - 1 ) = (IT- 1)2. Thus 
//i -,\ ./n i\2nn ni-.ni no-^2 nk—nk 2ri 2r2 2r; 

(4.7) v0 = ±(2T- 1) U l 1
l l 1

l l 2 l 2 -^k^k Qr Q2 '"*J 

is the prime factorization of v0 in /. 
By comparing Eqs. (4.6) and (4.7) we see that, up to units a 7,0,2,—, as must consist of the following: r/ 

occurrences of qj, r2 occurrences of qp., and so on, up to /y occurrences of <//, ̂ occurrences of IT- 1 (we 
note that up to this point there is no choice in the assignment of the a, except order and units) and /7/ occur-
rences of either 77 or 77,1)2 occurrences of either 72 or 72, and so on, up to/7^ occurrences of either% or 
7>. In this last listing - the occurrences of the 7, and 7/ - there are (1 +/?/)(1 +/?£) — (1 +/?*..) possible 
choices of the corresponding a, and distinct choices must yield distinct values for (X0/T) +xt since/ is a unique 
factorization domain and since no 7/ and 7/ can be associates. 

The introduction of units into the above assignments of a 1,0*2, —, &s c a n only produce a multiplication on 
the resulting value of (XQ/T) + xx by a factor of the form ±Tn. Since undergoj£the shifts in ^correspond to 
multiplication by powers of 7 in /, the effect of the introduction of these units on the sequence in X which is 
embedded in the flow v - v0 is to either produce an equivalent sequence or the negative of an equivalent se-
quence. These negatives always occur since, for example, 1 - 7 is a unit with norm - 1 . Thus we must double 
our previous count, thereby obtaining the final result 

2(1+ni)(1 + n2)-(1+nk). 

As an illustration of this theorem, we note that since 121 = 112 and 11 = 1 mod 10, the number of nonr 
equivalent embeddings on the flow v- 121 is 2(1 + 2) = 6, in agreement with our earlier calculations. 

Our next task is to establish a separation theorem for distinct embeddings in the same branch of a flow. To 
this end we define functions CT(t) and ST(t) for each real number f by 

(4.8) CT(t) = TL^L! t 

(4.9) STft) = ^-~T~ . 

The resemblance to the hyperbolic sine and cosine is evident and in fact 

(4.10) CT(t) = cosh (tznr), 

(4.11) ST(t) = sinh (tznr) 

for each real number t. Based on these relations one readily verifies that 

(4.12) u(t) = x0CT(t)+ 2-^-l (2xx -x0)ST(t), 
a 

(4.13) v(t) = xxCr(t)+ %-=-! (2x0 +xJST(t) 

are parametric equations for the branch of the flows passing through the point (x0, xj. For each real t the 
point (u(t), v(t)) can be thought of as representing 

T 

and one finds readily from Eqs. (4.12) and (4.13) that 
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(4.14) UM +v(t)= [*-f +x) rf . 

Of course this relation is not unanticipated and would serve well in the place of Eqs. (4.12) and (4.13), except 
that the representation (u/r) + v is not unique when u and v are irrational. In any case Eq. (4.14) assures that 
the orientation of the flows induced by the parameterization in Eqs. (4.12) and (4.13) agrees with the orienta-
tion induced by the embeddings, and that given two points (uu vj and (u2, v2) on the same branch of a type I 
or type II flow, (u2, \/2) follows (u u \/x)\x\ the orientation of Eqs. (4.12) and (4.13) if and only \Uu2/r) + v2 

is greater than (ux/r) + vl as a real number, while the opposite holds for type III or type IV flows. This obser-
vation provides a proof of our next theorem. 

Theorem 4.3. Every pair of distinct embeddings on a single branch of a Fibonacci flow perfectly separate 
one another in the sense that between every pair of consecutive points of either embedding there occurs exactly 
one point of the other. 

Proof. Assume the flow to be of type I or type II ; an obvious parallel argument applies in the other cases. 
Suppose (mu nj and (m2, n2) are consecutive points of one embedding so that 

m2 I m. \ „ 
-r1 +n2 =[ -±+n, r 2 . 7 l \ 7 

The points (x2n, X2n+?) ° f t n e o t n e r embedding will all follow the relation ; 
x2n ,v _ 1*0 ,v \ v2n 
— + x2n+1 ~ \pf +*1 J T 

for the appropriate values of x0 and xx, and since the sequences are of type I or type II, we have 

T? +*, > a 

2k m 1 

rZk > y + n1 

T2k+2 

If now2/r. is the smallest positive integer such that 

it follows readily that 

(*++*l) r2k-2 <mi+nK ( ^ +X1) r2k <^+n2< ( ^ * , 

and the theorem is proved. 

4.4. A Final Theorem 

Our last theorem does not concern embeddings but nevertheless fits in conveniently at this point of the paper. 
We have earlier been concerned with the various ways in which the natural integers can be represented canon-
ically by the sequence^. We consider now the canonical representations by an arbitrary sequencer E / with 
initial terms xQ and xx which are relatively prime. (The case in which xQ and x , are not relatively prime is a 
simple extension of this case.) We want to know which natural integers have canonical representations by x -

meaning sums of the form Y ^ k\x\ in which all but finitely many of the k,- are zero, no two consecutive k; are 

non-zero, and either all non-zero k; are 1 or else all non-zero k; are - 1 - we want to determine all such canoni-
cal representations when they exist. 

In view of the analysis in 3 it is natural to associate to each canonical representation^j_j k,Xj the quadratic 
integer 

E*/~ /*/• 

From foregoing results we have 
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The factor 

— — - +L,ki-ifi 

we know from Section 3 can be equal to any quadratic integer in / so we see that a natural integer/7? has a can-
onical representation by x if and only if there exists a natural integer /7 such that/7??/7J + n belongs to the prin-
cipal ideal in / generated by (xQ/r) + xx. In this case, the representation (m/r) + n byx agrees with that of 

by_£ Our last theorem shows that such n exist for each m and characterizes all such. 

Theorem 4.4. Let/7? be an arbitrary natural integer. Then the canonical representations of m by x_ have 
the same coefficient sets as the canonical representations of the quadratic integers 

(?*•)(?"•)"' 
by /where n is any natural integer such that 

nxQ z= mx x mod (x\ -xxx0 - x\). 

Moreover the foregoing congruence is solvable for/7 because^0 is prime tox? - x x x Q - x\. For each solution 
11, the resulting canonical representation of m by x has for its left shift a canonical representation for/? byx. 

Proof. In view of the remarks preceding the statement of the theorem, we need only show that the condition 

nxQ = mxx mod (x\ -xxxQ - x\) 

is necessary and sufficient for (m/r) + n to belong to the principal ideal in / generated by (xQ/r) + xx. Now 
given m and n, there exist a arid h in Z such that 

if and only if 

is in /. But 

so 

?*»-(7**.)(*H 

7**0 " -l*itf{T")-

/ I mx 
+ nx, -mxn v(xQ,xx) \ r 

Thus the necessary and sufficient conditions for (m/r) + n to be in the principal ideal generated by (X0/T)+X1 

are that 
mxx-nx0 = 0 mod v(x0, xx), and nxx-mx0-nx0 = 0 mod v(x0, xj. 

The second of these two congruences is a consequence of the first, as follows. Since x0 andxx are relatively 
prime it follows simply thatxQ and v(xQ, xx) and that xx and v(xQ,xx) are relatively prime. Le t * ; 1 denote 
the inverse of xx mod P(X0, XX ), so from the first congruence we have 
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m = x~lnx0 mod v(x0,xj 
whence 

nxx - mx0 -nx0 = nxx -x^nx* - nx0 = nx~l(x\ - xxx0 - x\) = 0 mod v(xQ,x J. 

Thus we have shown that the condition 
mxx -nxQ = Omod v(x0,xx) 

is necessary and sufficient for (mM + n to belong to the ideal generated by (x0/r)+xx, and the theorem follows. 

5. CONCLUSION 

We conclude with a number of comments concerning the foregoing material and possible extensions thereof. 

First of all, the necessity of distinguishing between the integer "represented" by ^ k/f,- and the quadratic in-

teger "determined" by ^ k-j' is unsatisfactory, since in view of all that has been shown it is clearly more 

natural to "represent" the quadratic integer J j kj1 then the ordinary integer Z^k/f,-. The necessity for this 

distinction exists because in the special case that J j ktr' is a natural integer it does not coincide with the nat-

ural integer ^ kjfj. This in turn traces to Eq. (3.1) in which ^ kjf; is the coefficient of - rather than the r-

free part of the expression. All of this can be corrected by defining gn = fn„i for every n and then defining 

Fibonacci representations to have the form ^k/g,- instead of ^kjfj. In this case Eq. (3.1) becomes 

ki?1 = YjkiQi+[ L ki9i+l\ r . 

Furthermore one may take s to be the sequence# in Section 2.4 and many notational asymmetries are eliminat-
ed. For example we find that 0mapsx tox0 + XXT rather than (x0/r) + xx. Also, Theorem 3.23 then states that 
the canonical representations which determine (or now we can say represent) natural integers from a ring iso-
morphic to the integers under the correspondence ^ k;g; -» X* kir>- AH of this is an argument in favor of 
defining the Fibonacci numbers by the sequence g instead of f. We have not done this because we do not wish 
to conflict with the definitions already present in the literature, and moreover, this would have the effect in-
creasing the disparity between the positional notation we use, which includes a position for fot and that cur-
rently in use for Zeckendorff representations, which terminates with the fx term. Additional indication for the 
indexing of the Fibonacci numbers by g instead of by /appears in [19]. 

We mention that the convergence proof of the resolution algorithm is really a second proof of the existence 
of canonical Fibonacci representations corresponding to the quadratic integers in /. We could have formulated 
and proved Theorem 3.26 and then the earlier theorems could be derived therefrom. This has a certain appeal 
because it is more intrinsically algebraic, but it was felt that the information contained in the statements and 
proofs of Theorems 3.2, 3.3 and 3.4 warranted their inclusion. 

A number of likely extensions and applications of the material in this paper suggest themselves. In references 
[7, 8, 9, 10] one finds investigations of other types of representations: Lucas representations, Pellian represen-
tations and so forth. The theorems of Section 2.3 have been stated with deliberate generality in anticipation of 
other applications, and it would be of interest to determine for what general class of representations the alge-
braic approach we have taken could succeed. In addition, there is a possibility that other of the results in the 
foregoing references could be interpreted and possibly extended in the light of these investigations. 

Theorem 3.8 clearly suggests a Fibonacci representation for rational numbers. These representations will So 
general be infinite and divergent, but possibly converge in some generalized sense to the rational numbers they 
represent. 

The resolution algorithm in conjunction with Eqs. (3.7) or (3.9) offers a method of computing first and sec-
ond canonical representations of positive integers in the sense of [5] . However, Eqs. (3.7) and (3.9) involve'the 
irrationality r. It would be of interest to determine an algorithm for generating these representations which 
does not involve irrationalities and also does not involve tables of Fibonacci numbers (as do the extant 
algorithms). 
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Finally, the pleasant properties of the Wythoff pairs in terms of Fibonacci representations as evidenced by 
Fig. 3.4 and pointed out in [18], together with the connection of Fibonacci representations with the ring / 
as explored in this paper suggests that their role in Wythoff's game might be derivable from formal algebraic 
arguments, in the spirit of what has been done by Gleason for the game of nim [12]. 
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