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In this paper we point out another of those fascinating "coincidences" which are so characteristically associ-
ated with the Fibonacci numbers. It occurs in relation to the so-called safe pairs (an, bn) for Wythoffs Nim 
[1 , 2, 3 ] . These pairs have been extensively analyzed by Carlitz, Scoville and Hoggatt in their researches on 
Fibonacci representations [4, 5, 6, 7] , a context unrelated to the game of nim. The latter have carefully estab-
lished the basic properties of the an and bn, so that even though that which we are about to report is not de-
scribed in their investigations, it is a ready consequence of them. For convenience and for reasons of precedence, 
we refer to the pairs (an, bn) as Wyth off pairs. 

The first forty Wythoff pairs are listed in Table 1 for reference. We recall that the pairs are defined inductively 
as follows: (a-j, b-i) = (1, 2), and, having defined (aj, bj), (a2, b2), —, (an, bn)f an+i is defined as the small-
est positive integer not among ai, bj, a2, b2, —, an, bn and then bn+i is defined asan/n + (n + 1). Each pos-
itive integer occurs exactly once as a member of some Wyth off pair, and the sequences lan) and {bn} are 
(strictly) increasing. t _ 

Wythoff [1] showed that an = fnaj and bn = fna2J, a being the golden ratio (1 + V5)/2; a more elegant 
proof of this appears in [3] . This connection of the Wythoff pairs with the golden ratio suggests to any "Fib-
onaccist" that the Fibonacci numbers are not very far out of the picture. The work of Carlitz et.'al. that we have 
mentioned shows that the an and bn play a fundamental part in the analysis of the Fibonacci number system. 
We now look at another connection with Fibonacci numbers. 
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The First Forty Wythoff Pairs 
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In examining Table 1, it is interesting to observe that the first few Fibonacci numbers occur paired with 
other Fibonacci numbers: 
(al,bj = (1,2), (a2,b2) = (3,5), (a5, bs) = (8,13), (al3, bl3) = (21,34), (a34, bdA) = (55, 89). 

It is not difficult to establish that this pattern continues throughout the sequence of Wythoff pairs, using the 
fact that lim (bn/an) = a and also lim (Fn+j/Fn) = a. However, an almost immediate proof can be had, based 
on Eq. (3.5) of [4 ] , which states that 

(1) an +bn = abn 

380 
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for each positive integer n. We defer the proof momentarily, it being our intention to state and prove a general-
ization of the foregoing. 

Clearly there are many Wythoff pairs whose members are not Fibonacci numbers; the first such is (a3, b3) = 
(4,7). The pair (4,7) can be used to generate a Fibonacci sequence in the same way X\\dX(au bj = (1,2) can be 
considered to determine the usual Fibonacci numbers; we take G-j = 4, 62 = 7, Gn+2= Gn+f + Gn. The first 
few terms of the resulting Fibonacci sequence are 

4 ,7 ,11 ,18 ,29 ,47 , - . ' 
It is (perhaps) a bit startling to observe that 

(a3,b3) = (4,7), (an,bn) = (11, 18), (alB,bJ = (29,47). 

The pair (a4, b4)= (6, 10) similarly generates a Fibonacci sequence 

6, 10, 16, 26, 42,68, -
and sure enough 

(a4/ bj = (6, 10), (a10, b j = (16, 26), (a26, b j = (42, 68). 

It is time for our first theorem. 

Theorem. Let Gu G2, G3, - be the Fibonacci sequence generated by a Wythoff pair (an, bn). Then every 
pairft?1# G2), (G3, GJ, (G5, GJ, - i s again a Wythoff pair. 

Proof. By construction, every Wythoff pair satisfies 

(2) ak + k = bk . 

Consider the first four terms of the generated Fibonacci sequence: 

an,bn,an+bn,an+2bn. 

According to Eq. (1) 
an+bn = atn, 

so that 
an+2bn = abn + bn . 

Equation (2) with k = bn gives 
abn

 + b„ = bbp , 

so that the four terms under consideration are in fact 
an, bn, abn, bbn . 

Thus we have proven that in general (G3, £ 4 ) is a Wythoff pair when (Gu G2) is. But (G5, G6) can be con-
sidered as consisting of the third and fourth terms of the Fibonacci sequence generated by (G3, GA), and the 
latter is already known to be a Wythoff pair. In this way, the theorem follows by induction. 

Thus we see that each Wythoff pair generates a sequence of Wythoff pairs; the pairs following the first pair of 
the sequence will be said to be generated by the first pair. We define a Wythoff pair to be primitive if no other 
Wythoff pair generates it. It is clear that if (am, bm) generates (an, bn), then m <n. For this reason, one can 
determine the first few primitive pairs by the following algorithm, analogous to Eratosthenes' sieve. The first 
pair (1,2) is clearly primitive. All those generated by (1,2) are eliminated (up to some specified point in the 
table). The first pair remaining must again be primitive, and all pairs generated by that primitive are eliminated. 
The process is repeated. 

The first few primitive pairs so determined are pair numbers 

1,3,4,6,8,9, 11, 12, 14, 1 6 , -

which we recognize at once to be the sequence 
ax, a2, a3, •••. 

This occasions our next theorem. 
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Theorem. A Wythoff pair (an, hn) is primitive if and only if n = a^ for some positive integer k. 

Proof. We have seen that the terms of the Fibonacci sequence generated by any Wythoff pair (an, bn)are 
of the form 

*n.bn.*bn.bbn.abbn.bbbn.~. 

From this it is obvious that any non-primitive pair (an, bn) must have n = bk for some positive integer k, which 
makes every pair (an, bn) with n = a^ a primitive pair. 

On the other hand, the sequence 

an, bn, abp, bbn, -

generated by (an,bn) shows clearly that each pair (abk, bbf<) is generated by (a^, b^); thus every primitive pair 
(an, bn) must have/7 = a^. 

This theorem shows that the number of primitive pairs is infinite, and has the following corollary. 

Corollary. There exists a sequence of Fibonacci sequences which simply covers the set of positive integers. 
An interesting property of the primitive pairs turns up when we calculate successively the determinants 

I 3/7 bn 

31 b1 J ' 
restricting our attention to those (an, bn) which are primitive. We find that 

4 7 

1 2 
= 1, 

6 10 

1 2 

9 15 

1 2 
= 3, 

12 20 

1 2 

and so on. This suggests that the value of the determinant applied to the k primitive is k - 1. By the foregoing 
theorem, we know that the kth primitive is in fact (aa., ba.), so the suggested identity becomes 

23ak-bak = k- 1, 

which follows readily from Eq. (3.2) of [4] . 
We conclude by interpreting our results in terms of the findings in [4] and [6] . According to the latter, the 

Wy'thoff pairs (an, bn) are those pairs of positive integers with the following two properties: first, the canonical 
Fibonacci representation of bn is exactly the left shift of the canonical Fibonacci representation of an, and 
second, the right-most 1 appearing in the representation of an occurs in an even numbered position. (In base 2 
this would be analogous to saying that bn = 2an and that the largest power of 2 which divides * „ is odd). No 
two 1's appear in succession in the representations of an and/?^. If we adda^ and/?,,, each 1 in the representa-
tion of bn will combine with its shift in the representation of an to yield a 1 in the position immediately to the 
left of the added pair, since Fn + Fn„i = Fn+i. This means that bn +an has a representation which is exactly 
the left shift of bn. By exactly the same reasoning, (bn + an) + bn has a representation which is exactly the left 
shift of bn + an, and so forth. Hence, the Fibonacci sequence generated by any Wythoff pair, when expressed 
canonically in the Fibonacci number system, consists of consecutive left shifts of the first term of the sequence. 
In the simplest case, the pair (1,2) generates the usual Fibonacci sequence, which in the Fibonacci number 
system would be expressed 

10, 100, 1000, 10000, 100000, -

and the generated pairs would be 

(10, 100), (1000, 10000), ••• 
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which have the requisite properties that each bn is the left shift of an and that each an has its right-most 1 in an 
even-numbered position. The next case corresponds to the sequence generated by (4, 7); 4, 7, 11, 18, - . In 
Fibonacci, this appears as 

1010, 10100, 101000, 1010000,-. 

This procedure can be traced back an additional step to the index n of the pair (an, bn). Doing so provides in 
addition a simple interpretation of the primitive pairs in terms of Fibonacci representations. There is a prescrip-
tion in [6] for generating a Wythoff pair (an, bn) from its index n, but it necessitates the so-called second can-
onical Fibonacci representation. For present purposes it suffices to remark that the second canonical representa-
tion of any n can be obtained by adding 1 to the usual canonical representation of n - 1. (For example,the 
canonical representation of 7 is 10100, so the second canonical representation of 8 is 10101). The numbers an 

and bn are then obtained from successive left shifts of the second canonical representation of n. Thus, in the 
example of (4,7), we obtain the second canonical representation of 4 as 1000 + 1 = 1001 and generate 

n an bn an+bn = abn, etc. 

10001:10010 100100 1001000 

We have seen that the primitive pairs correspond to the case n = a^. It is readily established on the basis of the 
results in [4] that the numbers a^ are precisely those numbers whose second canonical Fibonacci representa-
tions contain a 1 in the first position (as follows: first, a number is a b/< if and only if its canonical representa-
tion contains its right-most 1 in an odd position-which is never the first-and, second, a second canonical 
representation fails to be canonical if and only if it contains a 1 in the first position). It follows that the primi-

tive pairs (an, bn) are precisely those for which, the second canonical representation of n having a 1 in the first 

position, the canonical representation of an ends in 10 and that of hn ends in 1QO. Other terms of the generated 
Fibonacci sequence have additional zeroes, the location of any number in the sequence being exactly dependent 
on the number of terminal zeroes in its canonical representation. 

This enables one to determine for any positive integer/? exactly which primitive Wythoff pair generates the 
Fibonacci sequence in which that n appears, as well as the location of n in that sequence. First determine the 
canonical Fibonacci representation of n. The portion of the representation between the first and last 1's, in-
clusive, is the second canonical representation of the number k of the primitive Wythoff pair which generates 
the Fibonacci sequence containing n. One left shift produces a^; another produces b^. Counting a^ as the first 
term, b/< as the second, and so forth, the ith term will equal n, where / is the number of zeroes prior to the first 
1 in the Fibonacci representation of A7. For example, let n = 52. In Fibonacci, 52 is represented 101010000. 
Since 10101 represents 8 and the representation terminates in four zeroes, 52 must be the fourth term of the 
Fibonacci sequence generated by the primitive pair (a8, bB). As confirmation we note that this particular se-
quence is 

12 ,20 ,32 ,52 ,84 , - . 

AFOOTWOTE 

Because of the connection of the Wythoff pairs with Wythoff's Mim, the preceding prescription for generating. 
Wythoff pairs is clearly also a prescription for playing Wythoff's Nim using the Fibonacci number system. This 
gives the Fibonacci number system a role in this game quite analogous to the role of the binary number system 
in Bouton's Nim [8]. The analysis of Wythoff's Nim using Fibonacci representations can be made self-contained 
and elementary, certainly not requiring the level of mathematical sophistication required to follow the investi-
gations in [4, 5, 6, 7 ] . For the benefit of those interested in mathematical recreations, we provide this analysis 
in a companion paper [9 ] . It is interesting to note that the role of the Fibonacci number system in nim games 
was already anticipated by Whinihan [10] in 1963. 
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