RESTRICTED COMBINATIONS AND COMPOSITIONS

MORTON ABRAMSON
Downsview, Ontario, Canada M3J1P3

INTRODUCTION

The number of k-combinations of $\{1,2, \cdots, n\}$ with no two consecutive integers in a combination is

$$
\binom{n-k+1}{k}
$$

while the number of such restricted "circular" k-combinations, that is when 1 and n are also considered as consecutive integers, is

$$
\frac{n}{n-k}\binom{n-k}{k} .
$$

These are two well known examples of restricted combinations given by Kaplansky [1943] as preliminary problems in his elegant solution of the "problème des ménages." Some other examples are given by Abramson [1971], Church [1966, 1968, 1971] and Moser and Abramson [1969a, b].
In this paper, generating functions and recurrence relations are given for a large class of restricted combinations. This method seems to be a more unified approach than using combinatorial arguments such as those of Moser and Abramson [1969a] whose main result is obtained here in Section 7 as a special case of a more general result.
We take a k-composition of an integer n to be an ordered sequence of non-negative integers $a_{1}, a_{2}, \cdots, a_{k}$, whose sum is n. A one-to-one correspondence between the k-compositions of n with each summand $a_{i}>0$ and the ($k-1$)-combinations of $\{1,2, \cdots, n-1\}$ is obtained by representing the combinations and compositions by binary sequences, see also Abramson and Moser [1976]. Hence there is a correspondence between restricted combinations and restricted compositions. Also, there is a correspondence between "circular" combinations and "circular" compositions.
A k-composition of n may be interpreted of course as an occupancy problem of distributing n like objects in k distinct cells, with a_{j} objects in cell i. Further a k-composition, $a_{1}, a_{2}, \cdots, a_{k}$ of n corresponds to an n-combintion, with rebetitions allowed, from $\{1,2, \cdots, k\}$ with the integer i appearing a_{j} times. Also since every binary sequence corresponds to a lattice path we have a $1: 1$ correspondence between lattice paths in a rectangular array and combinations. For example expression (2.3) of Church [1970] is case (L) of Section 3 here. Some results on combinations which have been obtained by Church and Gould [1967] by counting lattice paths have been generalized by Moser and Abramson [1969 b] and can also be derived using our approach here.
Sections 1 to 5 deal with linear compositions and combinations and Sections 6 and 7 with circular compositions and combinations. Throughout we take, as usual,

$$
\binom{n}{k}= \begin{cases}n!/(n-k)!k!, & 0 \leqslant k \leqslant n \\ 0 & \text { otherwise. }\end{cases}
$$

1. RESTRICTED COMPOSITIONS

A k-composition of n

$$
\begin{equation*}
a_{1}+a_{2}+\cdots+a_{k}=n, \quad a_{i} \geqslant 1, \tag{1.1}
\end{equation*}
$$

is an ordered sequence of k positive integers a_{j}, called the summands or parts satisfying (1.1) for fixed n and k. It is well known and easy to show the number of compositions (1.1) is $\binom{n-1}{k-1}$. Let

$$
\begin{equation*}
A=\left(A_{1}, A_{2}, \cdots, A_{k}\right), \quad A_{i}=\left\{a_{i 1}<a_{i 2}<a_{i 3}<\cdots\right\} \tag{1.2}
\end{equation*}
$$

denote a given collection of k, not necessarily distinct, subsets A_{i}, of $\{1,2,3, \ldots\}$. Denote by $F(n, k ; A)$ the number of compositions (1.1) satisfying the restrictions $a_{i} \in A_{i}, i=1,2, \cdots, k$. That is

$$
\begin{equation*}
F(n, k ; A)=\sum_{\substack{a a_{1}+\cdots+a_{k}=n \\ a_{j} \in A_{i}}} 1 \tag{1.3}
\end{equation*}
$$

The enumerator generating function as is well known, see Riordan [1958] provides a general method of finding $F(n, k ; A)$. This is
(1.4) $\sum_{n} F(n, k ; A) x^{n}=\left(x^{a_{11}}+x^{a 12}+\cdots\right)\left(x^{a_{21}}+x^{a_{22}}+\cdots\right) \cdots\left(x^{a_{k 1}}+x^{a_{k 2}}+\cdots\right)$.

For example, in the case $A_{i}=\{1,2,3, \cdots\}$ for all i

$$
\sum_{n=1} F(n, k ; A) x^{n}=\left(x+x^{2}+x^{3}+\ldots\right)^{k}=\sum_{i=0}\binom{k+i-1}{i} x^{i+k}=\sum_{n=1}\binom{n-1}{k-1} x^{n}
$$

To each of the compositions (1.1) there corresponds a unique sequence of $n-k 0$'s and $k-11$'s:

$$
\begin{equation*}
\underset{a_{1}-1}{000 \cdots 01} \underset{a_{2}-1}{\stackrel{000 \cdots 01}{\leftarrow}} \quad \underset{a_{k-1}-1}{\stackrel{000 \cdots 01}{\leftrightarrows}} \underset{a_{k}-1}{\stackrel{000}{\leftrightarrows}} \tag{1.5}
\end{equation*}
$$

Note that since $a_{i} \geqslant 1$ in each part of (1.5) the 1 always appears except for the last part where we have a "missing" 1 . Replacing the 1 's by 0 's and 0 's by 1 's in (1.5) we have a dual representation,

$$
\begin{equation*}
\underset{a_{1}-1}{111 \cdots 10} \underset{a_{2}-1}{\stackrel{111 \cdots 10}{\leftarrow}} \stackrel{\cdots}{\underset{a_{k-1}-1}{\leftarrow}} \underset{a_{k}-1}{\stackrel{111 \cdots 10}{\leftarrow}} \stackrel{111 \cdots 1}{\leftrightarrows} \tag{1.6}
\end{equation*}
$$

corresponding to a unique sequence of $n-k 1$'s and $k-10$'s.
We call r integers
(2.1)
chosen from $\{1,2, \cdots, m\}$ an r-combination (choice, selection) of n. A part of (2.1) is a sequence of consecutive integers not contained in a longer sequence of consecutive integers. In a combination (2.1) a succession is a pair x_{i}, x_{i+1} with $x_{i+1}-x_{i}=1$. It is easy to see that if a combination has q parts then it has $r-q$ successions. For example
(2.2)

$$
1,3,4,5,8,9
$$

is a 6 -combination of 10 , with parts $(1),(3,4,5),(8,9)$ of lengths $1,3,2$, respectively. To each combination (2.1) corresponds a unique sequence of $r 1$'s and $m-r 0$'s

$$
\begin{equation*}
e_{1}, e_{2}, e_{3}, \cdots, e_{m} \tag{2.3}
\end{equation*}
$$

where $e_{i}=\left\{\begin{array}{l}1 \text { if } i \text { belongs to the } r \text {-combination } \\ 0 \text { if } i \text { does not belong to the } r \text {-combination. }\end{array}\right.$
For the combination (2.2) the corresponding sequence is
(2.4)
1011100110.

To a given restricted composition (1.1) corresponds by the use of (1.5) a unique ($k-1$)-combination

$$
\begin{equation*}
x_{1}<x_{2}<\cdots<x_{k-1} \tag{2.5}
\end{equation*}
$$

of $n-1$ such that
(2.6) $\quad x_{1}=a_{1}, \quad n-x_{k-1}=a_{k}, \quad x_{i+1}-x_{i}=a_{i+1}, \quad i=1,2, \cdots, k-2$.

Hence $F(n, k ; A)$ is the number of combinations (2.5) satisfying the restrictions
(2.7)

$$
x_{1} \in A_{1}, \quad n-x_{k-1} \in A_{k}, \quad x_{i+1}-x_{i} \in A_{i}, \quad i=1,2, \cdots, k-2
$$

For convenience, letting $n-1=m, k-1=r, F(m+1, r+1 ; A)$ is the number of combinations (2.1) satisfying

$$
\begin{equation*}
x_{1} \in A_{1}, \quad n-x_{r} \in A_{r+1}, \quad x_{i+1}-x_{i} \in A_{i}, \quad i=1,2, \cdots, r-1 \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\left(A_{1}, A_{2}, \cdots, A_{r+1}\right), \quad A_{i}=\left\{a_{i 1}<a_{i 2}<\cdots\right\}, \quad i=1, \cdots, r+1 \tag{2.9}
\end{equation*}
$$

are the given restrictions.

3. EXAMPLES OF RESTRICTED COMPOSITIONS AND COMBINATIONS

Denote by $F\left(n, k ; h_{1}, p_{1} ; h_{2}, p_{2} ; \cdots ; h_{k}, p_{k}\right)$ the number of k-compositions of n satisfying the restrictions

$$
\begin{equation*}
1 \leqslant h_{i} \leqslant a_{i} \leqslant p_{i}, \quad \text { for fixed } \quad h_{i}, p_{i}, \quad i=1, \cdots, k \tag{3.1}
\end{equation*}
$$

Using the sieve formula or the enumerator generating function (1.4) with $A_{i}=\left\{h_{i}, h_{i}+1, h_{i}+2, \cdots, p_{i}\right\}$, $i=1, \cdots, k$,

$$
\begin{align*}
& F\left(n, k ; h_{1}, p_{1} ; \cdots ; h_{k}, p_{k}\right)=\binom{n-h+k-1}{k-1} \tag{3.2}\\
& \quad+\sum_{j=1}^{k}(-1)^{j} \sum^{*}\left(\begin{array}{c}
n-h+k-j-1-\left(p_{i_{1}}-h_{i_{1}}\right)-\left(p_{i_{2}}-h_{i_{2}}\right)-\cdots-\left(p_{i_{j}}-h_{i_{j}}\right)
\end{array}\right)
\end{align*}
$$

with $h=h_{1}+\cdots+h_{k}$ and the summation Σ^{*} taken over all j-combinations $i_{1}<i_{2}<\cdots<i_{j}$ of $\{1,2, \cdots, k\}$. We consider now some special cases.
(A) The number of compositions (1.1) satisfying $1 \leqslant h_{i} \leqslant a_{i}, i=1, \cdots, k$, is the case $p_{i}=n, i=1, \cdots, k$ of (3.2),

$$
F\left(n, k ; h_{1}, n ; \cdots ; h_{k}, n\right)=\binom{n+k-1-h_{1}-h_{2}-\cdots-h_{k}}{k-1} .
$$

(B) The number of compositions (1.1) satisfying $1 \leqslant a_{i} \leqslant p_{i}$, is the case $h_{i}=1$ for all i, of (3.2) which is

$$
F\left(n, k ; 1, p_{1} ; \cdots ; 1, p_{k}\right)=\binom{n-1}{k-1}+\sum_{j=1}^{k}(-1)^{j} \sum^{*}\binom{n-1-p_{i_{1}}-p_{i_{2}}-\cdots-p_{i_{j}}}{k-1}
$$

the summation Σ^{*} taken over all j-combinations $i_{1}<i_{2}<\cdots<i_{j}$ of k.
(C) The number satisfying $1 \leqslant t \leqslant a_{i} \leqslant w$ for all i is the case $h_{i}=t, p_{i}=w$ for all i,

$$
F(n, k ; t, w ; \cdots ; t, w)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{n-k(t-1)+j(t-w-1)-1}{k-1}
$$

while
(D) the number satisfying $1 \leqslant t \leqslant a_{j}$ is (C) with $w=n$ or (A) wirh $h_{i}=t$,

$$
F(n, k ; t, n ; \cdots ; t, n)=\binom{n-k(t-1)-1}{k-1} .
$$

(E) The number satisfying $1 \leqslant a_{i} \leqslant w$ is (C) with $t=1$ or (B) with $p_{i}=w$,

$$
F(n, k ; 1, w ; \cdots ; 1, w)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{n-j w-1}{k-1}
$$

In the case $w=2$ it is easy to obtain another expression for this number, $\binom{k}{n-k}$, so

$$
\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{n-2 j-1}{k-1}=\binom{k}{n-k} .
$$

Corresponding restricted combinations. We now give the corresponding restricted combinations to the above examples using the correspondence described in Section 2. The number of r-combinations (2.1) of m satisfying for fixed $1 \leqslant h_{i} \leqslant p_{i} \leqslant m, i=1,2, \cdots, r+1$ the conditions

$$
\begin{equation*}
h_{1} \leqslant x_{1} \leqslant p_{1}, \quad m-\left(p_{r+1}-1\right) \leqslant x_{r} \leqslant m-\left(h_{r+1}-1\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i+1} \leqslant x_{i+1}-x_{i} \leqslant p_{i+1}, \quad i=1,2, \cdots, r-1 \tag{3.4}
\end{equation*}
$$

is equal to $F\left(m+1, r+1 ; h_{1}, p_{1} ; \cdots ; h_{r+1}, p_{r+1}\right)$. We consider now some special cases.
(F) The number of r-combinations satisfying conditions (3.4) only is obtained by putting $h_{1}=h_{r+1}=1$, $p_{1}=p_{r+1}=m$.
(G) The number of combinations satisfying
$h_{1} \leqslant x_{1}, \quad 1 \leqslant x_{r} \leqslant m-\left(h_{r+1}-1\right) \quad$ and $\quad h_{i+1} \leqslant x_{i+1}-x_{i}, \quad i=1, \cdots, r-1$
is by using (A) equal to

$$
\binom{m+r+1-h_{1}-h_{2}-\cdots-h_{r+1}}{r}
$$

(H) The number satisfying $h_{i+1} \leqslant x_{i+1}-x_{i}, i=1, \cdots, r-1$ is (G) with $h_{1}=h_{r+1}=1$,
(I) The number satisfying

$$
\left(\begin{array}{c}
m+r-1-h_{2}-h_{3}-\cdots-h_{r}
\end{array}\right)
$$

$$
x_{1} \leqslant p_{1}, \quad x_{r} \geqslant m-\left(p_{r+1}-1\right) \quad \text { and } \quad x_{i+1}-x_{i} \leqslant p_{i+1}, \quad i=1, \cdots, r-1
$$

is equal to $F\left(m+1, r+1 ; 1, p_{1} ; \cdots ; 1, p_{r+1}\right)$ while the number of combinations satisfying $x_{i+1}-x_{i} \leqslant p_{i+1}$ $i=1, \cdots, r-1$, is given by the expression in (B) with $n-1=m, k-1=r$, and $p_{1}=p_{r+1}=m$.
(J) The number satisfying
(3.5)

$$
t \leqslant x_{1} \leqslant w, \quad m-(w-1) \leqslant x_{r} \leqslant m-(w-1)
$$

and

$$
t \leqslant x_{i+1}-x_{i} \leqslant w, \quad i=1, \cdots, r-1
$$

is given in (C) with $n-1=m, k-1=r$,

$$
\sum_{j=0}^{r+1}(-1)^{j}\binom{r+1}{j}\binom{m-(r+1)(t-1)+j(t-w-1)}{r}
$$

(K) The number satisfying (3.5) only is equal to (3.2) with

$$
\begin{aligned}
n-1= & m, \quad k-1=r, \quad h_{1}=h_{r+1}=1 \quad \text { and } \quad p_{1}=p_{r+1}=m, \\
& \sum_{j=0}^{r-1}(-1)^{i}\binom{r-1}{j}\binom{m-(r-1)(t-1)-j(1+w-t)}{r} .
\end{aligned}
$$

(L) The number satisfying $t \leqslant x_{i+1}-x_{i}$, is (K) with $w=m$, or (H) with $h_{2}=h_{3}=\ldots=h_{r}=t$, is

$$
\binom{m-(r-1)(t-1)}{r}
$$

while in the case $t=2$, no two consecutive elements in a combination, the above reduces to the familiar number

$$
\binom{m-r+1}{r} .
$$

(M) The number satisfying $x_{i+1}-x_{i} \leqslant w$ is (K) with $t=1$,

$$
\sum_{j=0}^{r-1}(-1)^{j}\binom{r-1}{j}\binom{m-j w}{r}
$$

4. COMBINATIONS BY NUMBER AND LENGTH OF PARTS

Using correspondence (1.6) the number of ($n-k$)-combinations of $n-1$ with the length of each part less than or equal to $w-1$ is given by the expression in case (\mathbf{E}) of Section 3. Putting $n=m+1, k=m-r+1$, the number of r-combinations of m with each part not greater than $w-1$ is equal to

$$
\begin{equation*}
\sum_{i=0}^{m-r+1}(-1)^{i}\binom{m-r+1}{i}\binom{m-i w}{m-r} \tag{4.0}
\end{equation*}
$$

More generally we consider the following' Given a set of q restrictions

$$
\begin{equation*}
A=\left(A_{1}, \cdots, A_{q}\right), \quad A_{j}=\left\{2 \leqslant a_{j 1}<a_{j 2}<\cdots\right\} \tag{4.1}
\end{equation*}
$$

denote by $F_{q}(n, k ; A)$ the number of k-compositions of n such that,
(4.2 a) $a_{i_{j}} \in A_{j}, j=1,2, \cdots, q$, for some q-combination $i_{1}<i_{2}<\cdots<i_{q}$ of $\{1,2, \cdots k\}$.

$$
\begin{equation*}
a_{i}=1, \quad \text { for the remaining } k-q \text { indices } i \text {. } \tag{4.2b}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{q}(n, k ; A)=\binom{k}{q} F(n-k+q, q ; A) \tag{4.3}
\end{equation*}
$$

$$
\begin{array}{cc}
F_{q}(n, k ; A)=\binom{k}{q} F(n-k, q ; B), \quad \text { where } & B=\left(B_{1}, \cdots, B_{q}\right), \tag{4.4}\\
B_{j}=\left\{1 \leqslant a_{j 1}-1<a_{j 2}-1<\cdots\right\}, & j=1, \cdots, q .
\end{array}
$$

Let a k-composition of n be given and suppose exactly q of the a_{i},

$$
a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{q}}, \quad i_{1}<i_{2}<\cdots<i_{q}
$$

are each $\geqslant 2$. Using (1.6), to this k-composition of n corresponds a unique ($n-k$)-combination of $n-1$ with exactly q parts, the length of the $j^{\text {th }}$ part (reading from left to right) being $a_{i j}-1, j=1,2, \cdots, q$. Hence $F_{q}(n, k ; A)$ is the number of $(n-k)$-combinations of $(n-1)$ with exactly q parts, the length of the $j{ }^{\text {th }}$ equal to $a_{j} \in A_{j}, \quad j=1, \cdots, q$.

For convenience putting $k=m-r+1, n=m+1$, the number of r-combinations of m with the length of the $j^{\text {th }}$ part equal to $a_{j} \in A_{j}$ is by substituting in (4.3) and (4.4), equal to
or

$$
\begin{equation*}
F_{q}(m+1, m-r+1 ; A)=\binom{m-r+1}{q} F(r+q, q ; A) \tag{4.5}
\end{equation*}
$$

For fixed $1 \leqslant h_{i} \leqslant p_{i} \leqslant m$ and reading the parts from left to right it follows that the number of r-combinations of m having exactly q parts (or $r-q$ successions) and satisfying the restrictions,
(4.7)

$$
h_{i} \leqslant \text { length of the } i^{\text {th }} \text { part } \leqslant p_{i}, \quad i=1, \cdots, q
$$

is equal to
(4.8)

$$
\binom{m-r+1}{q} F\left(r, q ; h_{1}, p_{1} ; \cdots ; h_{q}, p_{q}\right)
$$

We consider now some special cases of (4.7). The number of combinations with exactly q parts such that the length of each part is greater or equal to t and less than or equal to w is the number (4.8) with $h_{i}=t, p_{i}=w$ for all i,

$$
\begin{equation*}
\binom{m-r+1}{q} \sum_{j=0}^{q}(-1)^{j}\binom{q}{j}\binom{r-q(t-1)+j(t-w-1)-1}{q-1} \tag{4.9}
\end{equation*}
$$

while the number with each part $\geqslant t$ is equal to

$$
\begin{equation*}
\binom{m-r+1}{q}\binom{r-q(t-1)-1}{q-1} \tag{4.10}
\end{equation*}
$$

and the number with each part $\leqslant w$ is

$$
\begin{equation*}
\binom{m-r+1}{q} \sum_{j=0}^{q}(-1)^{j}\binom{q}{j}\binom{r-j w-1}{q-1} \tag{4.11}
\end{equation*}
$$

Summing (4.11) over all $q \geqslant 1$ and using Vandermonde's Theorem, the number of combinations with each part $\leqslant w$ (and no restriction on the number of parts) is equal to

$$
\begin{equation*}
\sum_{j=0}^{m-r+1}(-1)^{j}\binom{m-r+1}{j}\binom{m-j(w+1)}{m-r} \tag{4.12}
\end{equation*}
$$

in agreement with (4.0) where each part is $\leqslant w-1$.
Thus we may enumerate a large ciass of restricted combinations using the above method. One further example is that each part is of even (odd) length while another is that the length is a multiple of a fixed number.

5. RECURRENCE RELATIONS

Denote k restrictions A_{1}, \cdots, A_{k} by

$$
\begin{equation*}
A^{k}=\left(A_{1}, \cdots, A_{k}\right), \quad A_{i}=\left\{0<a_{i 1}<a_{i 2}<\cdots\right\}, i=1, \cdots, k \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
F\left(n, k ; A^{k}\right)=\sum_{\substack{a 1_{1}+\cdots+a_{k}=n \\ a_{i} \in A_{i}}} 1=\sum_{\substack{a_{k} \in A_{k} \\ a_{k} \leqslant n}} \sum_{a_{1}+\cdots+a_{k-1}=n-a_{k}}=\sum_{\substack{a_{k} \in A_{k} \\ a_{k} \leqslant n}} F\left(n-a_{k}, k-1 ; A^{k-1}\right) \tag{5.2}
\end{equation*}
$$

For the particular restrictions $1 \leqslant h_{i} \leqslant a_{i} \leqslant p_{i}$, i.e.,

$$
\begin{equation*}
A_{i}=\left\{h_{i}, h_{i}+1, \cdots, p_{i}\right\}, \quad i=1, \cdots, k \tag{5.3}
\end{equation*}
$$

we have

$$
\begin{align*}
F\left(n, k ; A^{k}\right)= & \sum_{h_{k} \leqslant a_{k} \leqslant p_{k}} F\left(n-a_{k}, k-1 ; A^{k-1}\right) \tag{5.4}\\
= & F\left(n-h_{k}, k-1 ; A^{k-1}\right)+\sum_{h_{k} \leqslant j \leqslant p_{k}-1} F\left(n-1-j, k-1 ; A^{k-1}\right) \\
= & F\left(n-h_{k}, k-1 ; A^{k-1}\right)+F\left(n-1, k ; A^{k}\right)-F\left(n-1-p_{k}, k-1 ; A^{k-1}\right), \\
& \left(F\left(n, k ; A^{k}\right)=0, n \leqslant 0\right)
\end{align*}
$$

with $F\left(n, k ; A^{k}\right)$ the same as $F\left(n, k ; p_{1}, h_{1} ; \cdots ; p_{k}, h_{k}\right)$ of (3.2). In the case $h_{i}=t$ and $p_{i}=n$, the number of compositions with each part of length not less than t, denoted by $F(n, k ; \geqslant t)$ is
(5.5) $\quad F(n, k ; \geqslant t)=\sum_{j=t}^{n-(k-1) t} F(n-j, k-1 ; \geqslant t)=F(n-t, k-1 ; \geqslant t)+F(n-1, k ; \geqslant t)$.

Denoting by $F(n, k ; w)$ the number when $1 \leqslant a_{i} \leqslant w$, and using (5.4) with $h_{i}=1$ and $p_{i}=w$ for all i,
(5.6) $F(n, k ; \leqslant w)=\sum_{j=1}^{w} F(n-j, k-1 ; \leqslant w)=F(n-1, k-1 ; \leqslant w)+F(n-1, k ; \leqslant w)-F(n-1-w, k-1 ; \leqslant w)$.

If we wish to consider compositions of n with given restrictions but with the number of parts not specified, then of course we simply sum over k. That is

$$
\begin{equation*}
G(n ; A)=\sum_{k=1}^{n} F\left(n, k ; A^{k}\right) \tag{5.7}
\end{equation*}
$$

The generating function is

$$
\sum_{n} G(n ; A) x^{n}=\sum_{k}\left(x^{a 11}+x^{a 12}+\cdots\right)\left(x^{a 21}+x^{a 22}+\cdots\right) \cdots\left(x^{a_{k} 1}+x^{a k 2}+\cdots\right) .
$$

For example, the number of compositions of n with each part not less than t, is by summing the expression in (D) of Section 3 over all k,

$$
G(n ; \geqslant t)=\sum_{k=1}^{\left[\begin{array}{c}
n \tag{5.8}\\
t
\end{array}\right]}\binom{n-k(t-1)-1}{k-1}
$$

and satisfies the relation

$$
\begin{equation*}
G(n ; \geqslant t)=G(n-t ; \geqslant t)+G(n-1 ; \geqslant t) . \tag{5.9}
\end{equation*}
$$

In the case $t=2, G(n ; \geqslant 2)$ is the $(n-1)^{\text {th }}$ Fibonacci number, since $G(n ; \geqslant 2)=1$ or each of $n=2,3$. The number with each part of length not greater than $w<n$ is by summing the expression of (E) in Section 3 over all k,

$$
\begin{equation*}
G(n ; \leqslant w)=\sum_{k=1}^{n-w} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\binom{n-j w-1}{k-1} \tag{5.10}
\end{equation*}
$$

and satisfies the relation

$$
\begin{equation*}
G(n ; \leqslant w)=\sum_{i=1}^{w} G(n-i ; \leqslant w)=2 G(n-1 ; \leqslant w)-G(n-1-w i \leqslant w) . \tag{5.11}
\end{equation*}
$$

In the case $w=2$,

$$
F(n ; \leqslant 2)=\sum_{i=0}^{\left[\frac{n}{2}\right]}\binom{n-i}{i}
$$

and the above relation reduces to $G(n ; \leqslant 2)=G(n-1 ; \leqslant 2)+G(n-2 ; \leqslant 2), G(n ; \leqslant 2)$ being the $(n+1)^{\text {th }}$ Fibonacci number since $G(n: \leqslant 2)=1,2$ for $n=1,2$, respectively.
We may obtain relations for the number counting restricted combinations by considering the number $F\left(n, k ; A^{k}\right)$ which counts the corresponding restricted compositions.

6. CIRCULAR COMPOSITIONS AND COMBINATIONS

A (linear) composition (1.1) can be seen as a display of the integers $1,2, \cdots, n$ in a line, with $k-1$ "dividers," no two dividers adjacent, which yield the k parts:

$$
\begin{equation*}
1,2, \cdots, a_{1} / a_{1}+1, a_{1}+2, \cdots, a_{1}+a_{2} / \cdots / a_{1}+\cdots+a_{k-1}+1, \cdots, n \tag{6.1}
\end{equation*}
$$

The length of the $i^{\text {th }}$ part (from left to right) is equal to a_{i}. For example the 4 -composition of 9

$$
\begin{equation*}
2+3+1+3=9 \tag{6.2}
\end{equation*}
$$

is seen as
(6.3)

12/345/6/789.
Analogously, a circular k-composition of n is a display of $1,2, \cdots, n$ in a circle with k "dividers," no two dividers adjacent, yielding k parts each of length greater or equal to 1 . We may illustrate a circular k-composition of n as
[DEC.

placed on a circle in a clockwise direction with the integer 1 always belonging to the first part, i.e.,

$$
c \geqslant 1, \quad c+n-(b-1)=a_{1}, \quad a_{i} \geqslant 1 .
$$

Clearly the number of circular k-compositions (6.4) is equal to

$$
\sum_{a_{1}+\cdots+a_{k}=n} a_{1}=\binom{n}{k}
$$

For example,
(6.5)

or written as
(6.6) 67891/2345/. 91234/5678/, 12345/6789/,
recpectively, are three of the $\binom{9}{2}$ circular 2-compositions of 9 .
To each circular composition (6.4) there corresponds a unique sequence placed on a circle in a clockwise direction,
(6.7)

$$
000^{*} \ldots . .01 / 000 \ldots 01 / \ldots / 000 \ldots 01 /
$$

of $n-k 0$'s and k 1's with the 0 or 1 in the first part corresponding to the integer 1 of the composition marked by "*." Replacing the 1 's by 0 's and 0 's by 1 's in (6.7) we have a dual representation of the composition,

$$
\begin{equation*}
111^{*} \ldots 10 / 111 \ldots 10 / \ldots / 111 \ldots 10 / \tag{6.8}
\end{equation*}
$$

of $n-k 1$'s and $k 0$'s. We will call (6.7) and (6.8) "circular" sequences. For example, the circular sequences corresponding to each of (6.6), respectively, by use of (6.7) are
$00001 / 0001 /$ o $\quad \stackrel{*}{0} 001 / 0001 /, \quad \stackrel{*}{0} 0001 / 0001 /$,
and by use of (6.8) are, respectively,

$$
\text { 11110*/1110/, } \quad 1_{1}^{*} 1110 / 1110 /, \quad \stackrel{*}{1} 1110 / 1110 / .
$$

As earlier, consider the restrictions

$$
A=\left(A_{1}, \cdots, A_{k}\right), \quad A_{i}=\left\{1 \leqslant a_{i 1}<a_{i 2}<\cdots\right\}, \quad i=1, \cdots, k,
$$

where each A_{i} is some given subset of $\{1,2,3, \cdots\}$. Denote by $C(n, k ; A)$ the number of circular compositions (6.4) with $a_{i} \in A_{i}, i=1, \cdots, k$. That is

$$
C(n, k ; A)=\sum_{\substack{a a_{1}+\cdots+a_{k}=n \\ a_{i} \in A_{i}}} a_{i}
$$

Then the generating function is,

$$
\sum_{n} C(n, k ; A) x^{n}=\left(a_{11} x^{a_{11}}+a_{12} x^{a_{12}}+\cdots\right)\left(x^{a_{21}}+x^{a_{22}}+\cdots\right)\left(x^{a_{31}}+x^{a_{32}}+\cdots\right) \cdots\left(x^{a_{k 1}}+x^{a_{k 2}}+\cdots\right) .
$$

Checking for the case $A_{i}=\{1,2,3, \ldots\}$ for all i,

$$
\begin{aligned}
\sum_{n=k} c(n, k ; A) x^{n} & =\left(x+2 x^{2}+3 x^{3}+\ldots\right)\left(x+x^{2}+x^{3}+\ldots\right)^{k-1}=x(1-x)^{-2} x^{k-1}(1-x)^{-(k-1)} \\
& =\sum_{n=k}\binom{n}{k} x^{n} .
\end{aligned}
$$

An example of the use of the above generating function is obtained by taking $A_{i}=\left\{h_{i}, h_{i}+1, h_{i}+2, \cdots\right\}$, $i=1, \cdots, k$ and letting $h=h_{1}+\cdots+h_{k}$,

$$
\begin{aligned}
\sum_{n=h} C(n, k ; A) & =\left(h_{1} x^{h_{1}}+\left(h_{1}+1\right) x^{h_{1}+1}+\ldots\right) \prod_{i=2}^{k}\left(x^{h_{i}}+x^{h_{i}+1}+\ldots\right) \\
& =\left(h_{1}-h_{1} x+x\right) x^{h_{1}}(1-x)^{-2} x^{h-h_{1}}(1-x)^{-(k-1)} \\
& =\left(h_{1}-h_{1} x+x\right) x^{h} \sum_{i=0}\binom{k+i}{k} x^{i} \\
& =h_{1} x^{h}+\sum_{i=0}\left[h_{1}\binom{k+i+1}{k}+\left(1-h_{1}\right)\binom{k+i}{k}\right] x^{h+i+1} \\
& =h_{1} x^{h}+\sum_{i=0} \frac{h_{1} k+i+1}{k+i+1}\binom{k+i+1}{k} x^{h+i+1} \\
& =\sum_{n=h} \frac{h_{1} k+n-h}{k+n-h}\binom{k+n-h}{k} x^{n},
\end{aligned}
$$

and hence the number of compositions (6.4) with $1 \leqslant h_{i} \leqslant a_{i}, i=1, \cdots, k$ is

$$
\begin{equation*}
\frac{h_{1} k+n-h}{k+n-h}\binom{k+n-h}{k}, \quad h=h_{1}+\cdots+h_{k} \tag{6.9}
\end{equation*}
$$

We now consider a more general example which includes as a special case (6.9). Given $1 \leqslant h_{i} \leqslant p_{i} \leqslant m$, the number of circular compositions (6.4) satisfying $h_{i} \leqslant a_{i} \leqslant p_{i}, i=1,2, \cdots, k$ is

$$
\begin{align*}
C\left(n, k ; h_{1}, p_{1} ; \cdots ; h_{k}, p_{k}\right) & =\sum_{\substack{a_{1}+\cdots+a_{k}=n \\
h_{i} \leqslant a_{i} \leqslant p_{i}}} a_{1}=\sum_{a_{1}=h_{1}}^{p_{1}} a_{1} \sum_{\substack{a_{2}+\cdots+a_{k}=n-a_{1} \\
h_{i} \leqslant a_{i} \leqslant p_{i}}} 1 \tag{6.10}\\
& =\sum_{a_{1}=h_{1}}^{p_{1}} a_{1} F\left(n-a_{1}, k-1 ; h_{2}, p_{2} ; \cdots ; h_{k}, p_{k}\right),
\end{align*}
$$

where $F\left(n, k ; h_{2}, p_{2} ; \cdots ; h_{k}, p_{k}\right)$ is given by (3.2). Using the identity

$$
\begin{gather*}
\sum_{i=m}^{n} i\binom{x+k-2-i}{k-2}=\binom{x+k-m}{k} \frac{x+k m-m}{x+k-m}-\binom{x+k-n-1}{k} \frac{x+(n+1)(k-1)}{x+k-n-1} \tag{6.11}\\
=\binom{x+k-m}{k}+\binom{x+k-m-1}{k-1}(m-1)-\binom{x+k-n-1}{k}-\binom{x+k-n-2}{k-1} n
\end{gather*}
$$

and (3.2), (6.10) reduces to
(6.12)

$$
C\left(n, k ; h_{1}, p_{1}, \cdots, h_{k} p_{k}\right)
$$

$$
=\sum_{j=0}^{k-1}(-1)^{j} \Sigma *\left[\binom{x+k-h_{1}}{k} \frac{x+k h_{1}-h_{1}}{x+k-h_{1}}-\binom{x+k-p_{1}-1}{k} \frac{x+(k-1)\left(1+p_{1}\right)}{x+k-p_{1}-1}\right]
$$

$$
=\sum_{j=0}^{k-1}(-1)^{j} \Sigma^{*}\left[\binom{x+k-h_{1}}{k}+\binom{x+k-h_{1}-1}{k-1}\left(h_{1}-1\right)-\binom{x+k-p_{1}-1}{k}-\binom{x+k-p_{1}-2}{k-1} p_{1}\right]
$$

where

$$
h=h_{1}+\cdots+h_{k}, \quad x=n-h+h_{1}-j-\left(p_{i_{1}}-h_{i_{1}}\right)-\cdots-\left(p_{i_{j}}-h_{i_{j}}\right) \text { for } j>0,
$$

$x=n-h+h_{1}$ for $j=0$ and the summation Σ^{*} is taken over all j combinations

$$
i_{1}<i_{2}<\cdots<i_{j} \quad \text { of }\{2,3, \cdots, k\} .
$$

We consider now some of the many special cases of (6.12). The number of circular compositions satisfying:
(A) $h_{i} \leqslant a_{i}, i=1,2, \cdots, k$ is (6.12) with $p_{i}=n$ for all i, is the first term of second last expression for $j=0$,

$$
\frac{n-h+k h_{1}}{n-h+k}\binom{n-h+k}{k}
$$

in agreement with (6.9),
(B) $a_{i} \leqslant p_{i}, i=1, \cdots, k$ is (6.12) with $h_{i}=1$ for all i,

$$
\begin{aligned}
& \sum_{j=0}^{k-1}(-1)^{j} \Sigma^{*}\left[\binom{y}{k}-\binom{y-p_{1}}{k}-\binom{y-p_{1}-1}{k-1} p_{1}\right] \\
& =\sum_{j=0}^{k-1}(-1)^{j} \Sigma^{*}\left[\binom{y}{k}-\binom{y-p_{1}}{k} \frac{y+p_{1}(k-1)}{y-p_{1}}\right],
\end{aligned}
$$

where $y=n-\left(p_{i_{1}}+\cdots+p_{i_{j}}\right)$, the summation Σ^{*} taken over all j-combinations $i_{1}<\cdots<i_{j}$ of $\{2, \cdots, k\}$ for $j \geqslant 1$ and $y=n$ when $j=0$.
(C) $h_{1} \leqslant a_{1} \leqslant p_{1}$ and $t \leqslant a_{i} \leqslant w$ for $i=2,3, \cdots, k$ is (6.12) with $h_{i}=t, p_{i}=w, i=2, \cdots, k$,

$$
\begin{aligned}
& \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}\left[\begin{array}{c}
n-(k-1) t+k-h_{1}-j(1+w-t) \\
k
\end{array}\right) \frac{n-(k-1)\left(t-h_{1}\right)-j(1+w-t)}{n-(k-1) t+k-h_{1}-j(1+w-t)} \\
& \left.\quad-\binom{n-(k-1)(t-1)-p_{1}-j(1+w-t)}{k} \frac{n-(k-1)\left(t-1-p_{1}\right)-j(1+w-t)}{n-(k-1)(t-1)-p_{1}-j(1+w-t)}\right] \\
& \quad=\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}\left[\binom{n-(k-1)(t-1)-j(1+w-t)-h_{1}+1}{k}\right. \\
& \quad+\binom{n-(k-1)(t-1)-j(1+w-t)-h_{1}}{k-1}\left(h_{1}-1\right) \\
& \left.\quad-\binom{n-(k-1)(t-1)-j(1+w-t)-p_{1} .}{k}+\binom{n-(k-1)(t-1)-j(1+w-t)-p_{1}-1}{k-1} p_{1}\right]
\end{aligned}
$$

(D) $t \leqslant a_{i} \leqslant w$ is case (C) with $h_{1}=t, p_{1}=w$,
(E) $t \leqslant a_{i}$ for all i, is case (D) with $w=n$ or case (A) with $h_{i}=t$ for all i,

$$
\frac{n}{n-k(t-1)}\binom{n-k(t-1)}{k}
$$

(F) $a_{i} \leqslant w$ for all i is case (D) with $t=1$ or case (B) with $p_{i}=w$.

$$
\begin{aligned}
& \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}\left[\binom{n-j w}{k}-\binom{n-w(j+1)}{k} \frac{n-w(j+1)+w k}{n-w(j+1)}\right] \\
& \quad=\binom{n}{k}+\sum_{i=1}^{k}(-1)^{i}\left[\binom{k-1}{i}\binom{n-i w}{k}+\binom{k-1}{i-1}\binom{n-i w}{k} \frac{n-i w+w k}{n-i w}\right] \\
& \quad=\frac{n}{k} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\binom{n-i w-1}{k-1},
\end{aligned}
$$

and in the case $w=2$ another expression is

$$
\frac{n}{k}\binom{k}{n-k}
$$

see case (E) of Section 3.
To obtain recurrence relations we proceed as follows. Let $A^{k}=\left(A_{1}, \cdots, A_{k}\right)$. Then for $k \geqslant 2$,
(6.13) $C\left(n, k ; A^{k}\right)$

$$
1=\sum_{\substack{a_{1}+\cdots+a_{k}=n \\ a_{i} \in A_{i}}} a_{1}=\sum_{\substack{a_{k} \in A_{k} \\ a_{k} \leqslant n}} \sum_{a_{1}+\cdots+a_{k}-1=n-a_{k}} a_{1}=\sum_{\substack{a_{k} \in A_{k} \\ a_{k} \leqslant n}} c\left(n-a_{k}, k-1 ; A^{k-1}\right) .
$$

This is the same as that for the linear case (5.2) with different initial values. For the particular restrictions $1 \leqslant h_{i} \leqslant a_{i} \leqslant p_{i}$, i.e.,

$$
A_{i}=\left\{h_{i}, h_{i}+1, \cdots, p_{i}\right\}, \quad i=1, \cdots, k,
$$

we have

$$
\begin{align*}
C\left(n, k ; A^{k}\right)= & \sum_{h_{k} \leqslant a_{k} \leqslant p_{k}} C\left(n-a_{k}, k-1 ; A^{k-1}\right) \tag{6.14}\\
= & C\left(n-h_{k}, k-1 ; A^{k-1}\right)+\sum_{h_{k} \leqslant j \leqslant p_{k}-1} C\left(n-1-j, k-1 ; A^{k-1}\right) \\
= & C\left(n-h_{k}, k-1 ; A^{k-1}\right)+C\left(n-1, k ; A^{k}\right)-C\left(n-1-p_{k}, k-1 ; A^{k-1}\right), \\
& \left(C\left(n, k ; A^{k}\right)=0, n \leqslant 0\right) .
\end{align*}
$$

The number of circular compositions with each $a_{j} \geqslant t$, denoted by $C(n, k ; \geqslant t)$ and given by the expression in case (E) above satisfies the relation
(6.15)

$$
C(n, k ; \geqslant t)=C(n-t, k-1 ; \geqslant t)+C(n-1, k ; \geqslant t) .
$$

Denoting by $C(n, k ; \geqslant w)$ the number when $1 \leqslant a_{i} \leqslant w$ then the expression is given in case (F) above and satisfies the relation

$$
\begin{align*}
C(n, k ; \leqslant w) & =\sum_{j=1}^{w} C(n-j, k-1 ; \leqslant w) \tag{6.16}\\
& =C(n-1, k-1 ; \leqslant w)+C(n-1, k ; \leqslant w)-C(n-1-w, k-1 ; \leqslant w) .
\end{align*}
$$

Summing (6.15) over all k the number of circular compositions with each part not less than t is

$$
\begin{equation*}
D(n ; \geqslant t)=\sum_{k=0}^{\left[\frac{n}{t}\right]} \frac{n}{n-k(t-1)}\binom{n-k(t-1)}{k} \tag{6.17}
\end{equation*}
$$

and
(6.18)

$$
D(n ; \geqslant t)=D(n-t ; \geqslant t)+D(n-1 ; \geqslant t) .
$$

In the case $t=2$, the above relation reduces to

$$
D(n ; \geqslant 2)=D(n-2 ; \geqslant 2)+D(n-1 ; \geqslant 2)
$$

and $D(n ; \geqslant 2)$ is the Lucas number having values 1,3 for $n=1,2$, respectively. Summing (6.16) over all k the number $D(n ; \leqslant w)$ of circular compositions with each part not greater than w is

$$
\begin{equation*}
D(n ; \leqslant w)=\sum_{k=1} \frac{n}{k} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\binom{n-i w-1}{k-1} \tag{6.19}
\end{equation*}
$$

and satisfies the relation

$$
\begin{equation*}
D(n ; \leqslant w)=\sum_{j=1}^{w} D(n-j ; \leqslant w) \tag{6.20}
\end{equation*}
$$

In the case $w=2, D(n ; \geqslant 2)$ is also the Lucas number with $D(n ; \geqslant 2)$ having values 1,3 for $n=1,2$, respectively. Given a set of q restrictions

$$
A=\left(A_{1}, \cdots, A_{q}\right), \quad A_{j}=\left\{2 \leqslant a_{j 1} \leqslant a_{j 2} \leqslant \cdots\right\},
$$

denote by $C_{q}(n, k ; A)$ the number of circular compositions (6.4) such that
(a) $a_{i j} \in A_{j}, j=1,2, \cdots, q$ for some q-combination

$$
i_{1}<i_{2}<\cdots<i_{q} \text { of }\{1,2, \cdots, k\}
$$

(b) $a_{1}=1$ for the remaining $k-q$ indices i.

Then by partitioning the compositions into those with $a_{1}=1$ and $a_{1}>1$

$$
\begin{align*}
C_{q}(n, k ; A) & =\binom{k-1}{q} F(n-k+q, q ; A)+\binom{k-1}{q-1} C(n-k+q, q ; A) \tag{6.21}\\
& =\binom{k-1}{q} F(n-k, q ; B)+\binom{k-1}{q-1} C(n-k, q ; B)+\binom{k-1}{q-1} F(n-k, q ; B) \\
& =\binom{k}{q} F(n-k, q ; B)+\binom{k-1}{q-1} C(n-k, q ; B),
\end{align*}
$$

where

$$
B=\left(B_{1}, \cdots, B_{q}\right), \quad B_{j}=\left\{1 \leqslant a_{j 1}-1 \leqslant a_{j 2}-1 \leqslant \cdots\right\}, j=1, \cdots, q
$$

and $F(n, k ; A)$ is the number of restricted (linear) compositions discussed earlier.

7. CIRCULAR COMBINATIONS

A circular k-combination of n is a set of k integers

$$
\begin{equation*}
x_{1}<x_{2}<\cdots<x_{k} \tag{7.1}
\end{equation*}
$$

chosen from the integers $1,2, \cdots, n$ displayed in a circle. That is we consider 1 and n to be consecutive. For example the circular 6 -combination $1,3,4,5,8,9$ of 9 has parts (891) and (345) each of length 3 while the same (linear) 6 -combination has parts (1), (345), (89). Of course, the number $\binom{n}{k}$ of (linear) k-combinations of n is equal to the number of circular k-combinations of n. A succession here is a pair x_{i}, x_{i+1} with $x_{i+1}-x_{i}=1$ with $n, 1$ also considered a succession. As before if a combination (7.1) has q parts it has $k-q$ successions. As before to each circular combination (7.1) corresponds a unique sequence of $k 1$'s and $n-k 0$'s.

$$
\begin{equation*}
\stackrel{*}{e}_{1}, e_{2}, \cdots, e_{n} \tag{7.2}
\end{equation*}
$$

with

$$
e_{i}=\left\{\begin{array}{l}
1 \text { if } i \text { is in the combination, } \\
0 \text { if } i \text { is not in the combination. }
\end{array}\right.
$$

We shall think of the sequence (7.2) placed on a circle in a clockwise direction. Hence the "circular" sequence (7.2) corresponds to the circular sequence (6.7) by agreeing to let e_{1} correspond to the element of (6.7) marked by a *. To a circular composition (6.4) corresponds a unique circular combination (7.2) with

$$
\begin{gathered}
n-\left(x_{k}-x_{1}\right)=a_{1} \\
x_{i+1}-x_{i}=a_{i} \quad \text { for } i=1,2, \cdots, k-1 .
\end{gathered}
$$

Thus the number of combinations (7.1) satisfying the restrictions

$$
n-\left(x_{k}-x_{1}\right) \in A_{1} \quad \text { and } \quad x_{i+1}-x_{i} \in A_{i} \quad \text { for } \quad i=1,2, \cdots, k-1
$$

where the A_{i} are given by (6.7), is simply the number $C(n, k ; A)$ of Section 6 . For example the number of combinations satisfying

$$
h_{1} \leqslant n-\left(x_{k}-x_{1}\right) \leqslant p_{1} \text { and } t \leqslant x_{i+1}-x_{i} \leqslant w \text { for } i=1,2, \cdots, k-1
$$

is the expression of case (C) of Section 6 and is in agreement with Moser and Abramson [1969 a, expression (14) for $\left.C_{n, k}\left(t, w ; h_{1}, p_{1}\right)\right]$.
Using the dual representation (6.8) and (7.2) we have a one-one correspondence between the circular compositions (6.4) and circular ($n-k$)-combinations of n. For example the number of circular ($n-k$)-combinations of n with each part of length not greater than $w-1$ is the number of circular compositions with $a_{i} \leqslant w$ given in case (F) of Section 6. Putting $n=m$ and $k=m-r$ the number of circular r-combinations of m is

$$
\begin{equation*}
\frac{m}{m-r} \sum_{i=0}^{m-r}(-1)^{i}\binom{m-r}{i}\binom{m-i w-1}{m-r-1} \tag{7.3}
\end{equation*}
$$

in agreement with Moser and Abramson [1969 a, expression (29)].
More generally the number of circular r-combinations of m having exactly q parts, or $r-q$ successions, the length of the $j^{\text {th }}$ part (reading in a clockwise direction with the first part that part containing the smallest integer greater than or equal to 1) equal to $a_{j}-1, a_{j} \in A_{j}, j=1,2, \cdots, q$ is $C_{q}(m, m-r ; A)$ given by (6.21).

Forexample letting $A_{j}=\{t+1, t+2, \cdots\}$ for all i the number of circular r-combinations of m with exactly q parts and with each part of length not less than t is by using (6.21), (D) of Section 3 and (E) of Section 6,

$$
\begin{align*}
C_{q}(m, m-r ; A) & =\binom{m-r}{q} F(r, q ; B)+\binom{m-r-1}{q-1} C(r, q ; B) \tag{7.4}\\
& =\binom{m-r}{q}\binom{r-q(t-1)-1}{q-1}+\binom{m-r-1}{q-1}\binom{r-q(t-1)}{q} \frac{r}{r-q(t-1)} \\
& =\binom{m-r}{q}\binom{r-q(t-1)-1}{q-1} \frac{m}{m-r} .
\end{align*}
$$

The number with exactly q parts each of length not greater than w is obtained by taking $B_{i}=\{1,2, \cdots, w\}$ for all i and using (E) of Section 3 and (F) of Section 6,

$$
\begin{align*}
C_{q}(m, m-r ; A) & =\binom{m-r}{q} F(r, q ; B)+\binom{m-r-1}{q-1} C(r, q ; B) \tag{7.5}\\
& =\frac{m}{m-r}\binom{m-r}{q} \sum_{i=0}(-1)^{i}\binom{q}{i}\binom{r-i w-1}{q-1} \\
& =\frac{m}{m-r} \sum_{i=0}(-1)^{i}\binom{m-r}{i}\binom{m-r-i}{q-i}\binom{r-i w-1}{q-1} .
\end{align*}
$$

Summing (7.5) over all q we obtain the number of circular combinations of m with each part of length not greater than w.

$$
\frac{m}{m-r} \sum_{i=0}^{m-r}(-1)^{i}\binom{m-r}{i}\binom{m-i(w+1)-1}{m-r-1}
$$

in agreement with (7.3) where a part is of length not greater than $w-i$.

REFERENCES
Morton Abramson, 1971, "Combinations, Compositions and Occupancy Problems," The Fibonacci Quarterly, Vol. 9, No. 2 (April 1971), pp. 225-236.

Morton Abramson and W. O. J. Moser, 1976, "Linear and Ring Arrangements," Portugaliae Math. (to appear).
C. A. Church, Jr., 1966, "On a Lemma of M. Abramson," Canadian Math. Bull. (9), pp. 347-348.
C. A. Church, Jr., 1968, "Combinations and Successions," Math. Mag. (41), pp. 123-128.
C. A. Church, Jr., 1970, "On the Enumeration of Certain Triangular Arrays," The Fibonacci Quarterly, Vol. 8, No. 4 (Dec. 1970), pp. 235-241.
C. A. Church, Jr., 1971, "Combinations and Their Duals," The Fibonacci Quarterly, Vol. 9, No. 4 (Dec. 1971), pp. 505-509
C.A. Church, Jr., and H. W. Gould, 1967, "Problem of Terquem and an Extension of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 5, No. 1 (Feb. 1967), pp. 59-68.
I. Kaplansky, 1943, Solution to the "Problëme des Ménages," Bull. Amer. Math. Soc., (49), pp. 784-785.
W. O. J. Moser and Morton Abramson, 1969 a, "Enumeration of Combinations with Restricted Differences and Cospan," J. Comb. Theory, (7), pp. 162-170.
W. O. J. Moser and Morton Abramson, 1969 b, "Generalizations of Terquem's Problem," J. of Comb. Theory (7), pp. 171-180.
J. Riordan, 1968, An Introduction to Combinatorial Analysis, Wiley, New York.

* *

ODE TO PASCAL'S TRIANGLE

Pascal. . . Pascal, you genius, you, Constructed a triangle of powers of two.
Coefficients, and powers of eleven, by base ten,
A more useful aid, there's never been.
Head, tail, tail, head,
Answers from your rows are read.
Combinations and expectations, to my delight,
Can also be proved wrong or right.
With a little less effort and a little more ease,
I might have gotten thru this course in a breeze.
So, Pascal . . . Pascal, you rascal you.
Why did you limit it to powers of two?
... Bob Jones
Southern Baptist College
Blytheville, AR 72315
[See p. 455 for " Resp onse."]

