- 4. Marjorie Bicknell and V.E. Hoggatt, Jr., "Unit Determinants in Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), pp. 131-144.
- 5. V.E. Hoggatt, Jr., and Marjorie Bicknell, "Special Determinants Found Within Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 457-465.
- 6. L. C. Hsu, "Note on a Combinatorial Algebraic Identity and its Application," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 480-484.
- 7. H. W. Gould, "Combinatorial Identities," Published by the Author, Morgantown, W. Va., 1972.
- 8. P. Bruckman and V. E. Hoggatt, Jr., "H-Convolution Transform," The Fibonacci Quarterly, Vol.13, No. 4 (Dec. 1975), pp. 357-368.
- 9. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Pascal, Catalan, and General Sequence Convolution Arrays in a Matrix," The Fibonacci Quarterly, Vol. 14, No. 2 (April 1976), pp. 135-142.
- 10. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Numerator Polynomial Coefficient Arrays for Catalan and Related Sequence Convolution Triangles," to appear, The Fibonacci Quarterly, February, 1977.

EXPONENTIALS AND BESSEL FUNCTIONS

BRO. BASIL DAVIS, C. F. C.

St. Augustine's High School, P. O. Bassein Road, 40102 Maharashtra, India

and

V. E. HOGGATT, JR. San Jose State University, San Jose, California 95192

A Bessell function of order *n* may be defined as follows:

$$J_n(x) = \sum_{\lambda=0}^{\infty} \frac{(-1)^{\lambda}}{\Gamma(\lambda+1)\Gamma(\lambda+n+1)} \left(\frac{x}{2}\right)^{n+2\lambda}$$

It may be easily shown that for integral $n_{i}J_{ii}(x)$ is the coefficient of U^{n} in the expansion of $\exp\left[\frac{x}{2}\left(u-\frac{1}{u}\right)\right]$

i.e.,

(1)

(2)
$$\exp\left[\frac{x}{2}\left(u-\frac{1}{u}\right)\right] = \sum_{n=-\infty}^{\infty} U^{n} J_{n}(x)$$

Now let

$$(3) u - \frac{1}{u} = L_{2k+1}$$

where L_{2k+1} is a Lucas number defined by

nber defined by L ₁ = 1, L ₂ = 3, L _n = L _{n-1} + L _{n-2} , (4) where *n* is any integer.

Equation (3) becomes $u^2 - uL_{2k+1} - 1 = 0$ with roots

$$\left(\frac{1+\sqrt{5}}{2}\right)^{2k+1} = \alpha^{2k+1}$$
 and $\left(\frac{1-\sqrt{5}}{2}\right)^{2k+1} = \beta^{2k+1}$,

where

$$a = \frac{1 + \sqrt{5}}{2}$$
 and $\beta = \frac{1 - \sqrt{5}}{2}$

 $\phi^2 = \phi + 1.$

are the roots of the well known quadratic

(5)

[Continued on page 418.]