$$
\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)\left(\begin{array}{cc}
\phi & 1 \\
1 & -\phi
\end{array}\right)=\left(\begin{array}{rr}
\phi & 1 \\
1 & -\phi
\end{array}\right)\left(\begin{array}{cc}
\phi^{n} & 0 \\
0 & \phi^{\prime n}
\end{array}\right)
$$

Multiplying out gives

$$
\left(\begin{array}{ll}
\phi F_{n+1}+F_{n} & F_{n+1}-\phi F_{n} \\
\phi F_{n}+F_{n-1} & F_{n}-\phi F_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
\phi^{n+1} & \phi^{\prime n} \\
\phi^{n} & \phi^{\prime(n-1)}
\end{array}\right) .
$$

Equating corresponding terms results in the following equivalent system of equations:

$$
\begin{gathered}
\phi F_{n+1}+F_{n}=\phi^{n+1} \\
F_{n+1}-\phi F_{n}=\phi^{, n} \\
\phi F_{n}+F_{n-1}=\phi^{n} \\
F_{n}-\phi F_{n-1}=\phi^{\prime(n-1)} .
\end{gathered}
$$

Solving the second equation for F_{n+1} and substituting this into the first equation, gives

$$
\phi\left(\phi^{\prime n}+\phi F_{n}\right)+F_{n}=\phi^{n+1}
$$

Multiplying through by $-\phi^{\prime}$ gives

$$
\phi^{\prime n}+\phi F_{n}-\phi^{\prime} F_{n}=\phi^{n} .
$$

Finally, solving for F_{n} gives the desired result:

$$
F_{n}=\frac{\phi^{n}-\phi^{\prime}}{\phi-\phi^{\prime}}
$$

REFERENCES

1. H. E. Huntley, The Divine Proportion, Dover, Inc., New York, 1970.
2. Joseph Ercolano, "A Geometric Treatment of Some of the Algebraic Properties of the Golden Section," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), pp. 204-208.
3. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin Co., Boston, 1969.
4. Verner E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers," The Fibonacci Quarterly, Vol. 1, No. 3, (Oct. 1963), pp. 61-65.
[Continued from page 418.]
From (9a) and (9b), we obtain
(10a)

$$
\sum_{n=-\infty}^{\infty} F_{(2 k+1) n} J_{n}(x)=0
$$

and
(10b)

$$
\sum_{n=-\infty}^{\infty} F_{(2 k+1) n-1} J_{n}(x)=\exp \left(\frac{x}{2} L_{2 k+1}\right)
$$

Equations (10a) and (10b) can be combined in the following equation, as may be shown by induction

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} F_{(2 k+1) n+m} J_{n}(x)=F_{m} \exp \left(\frac{x}{2} L_{2 k+1}\right) \tag{11}
\end{equation*}
$$

With $k=0$ and $m=1,(11)$ becomes

$$
\sum_{n=-\infty}^{\infty} F_{n+1} J_{n}(x)=\exp \frac{x}{2}
$$

*

