
4 2 6 GOLDEN SEQUENCES OF MATRICES 
WITH APPLICATIONS TO FIBONACCI ALGEBRA 

Fn+1 Fn \ / 0 / \ / « t \ ( <t>" 0 

Multiplying out gives 
<t>Fn+1 + Fn Fn+1-<t>Fn \_( <f+1 4>'h 

DEC. 1976 

, 0 ^ +F^ Fn -<t>Fn^ r\<t>n (!>'(n~1) 

Equating corresponding terms results in the following equivalent system of equations: 
<t>Fn+1 + Fn = <S>n+1 

Fn+1-<t>Fn = <P'" 

Wn + F-n-, = <P" 

Fn - <i>Fn-j = <t>'(n~1) . 

Solving the second equation for Fn+1 and substituting this into the first equation, gives 
m,n+<s>Fn)+Fn = <f+1. 

Multiplying through by - 0 ' gives 

<S>'n+<t>Fn-VFn = <P"> 

Finally, solving for Fn gives the desired result: 

Fn 
= < £ ^ 

'" ~0 - 0 ' ' 
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[Continued from page 418.] 

From (9a) and (9b),we obtain 
(10a) £ F(2k+DnJnM = 0 

/7=-oo 

and 

(10b) £ F(2k+1)n-lJn(x) = exp ( | L2k+1 ) . 

Equations (10a) and (10b) can be combined in the following equation, as may be shown by induction 

(1D £ F(2k+1)n+mJn(x> = Fm exp \[~L2k+l] . 

With k = O and m = 1, (11) becomes 

YL Fn+lJn(x>= exp | 


