426 GOLDEN SEQUENCES OF MATRICES
WITH APPLICATIONS TO FIBONACCI ALGEBRA
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Equating corresponding terms results in the following equivalent system of equations:
OF 1+ Fn = ¢
Fne1—¢Fp = "
OFp+ Fpg = 0"
Fn = @Fp-1 = ¢,(n-7) .
Solving the second equation for F 7 and substituting this into the first equation, gives
$(9" +¢Fp) + Fp = "7

Multiplying out gives

Multiplying through by —¢’ gives
¢+ OFn—¢Fy = 9",
Finally, solving for £, gives the desired result:
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[Continued from page 418.]
From (9a) and (9b), we obtain
(10a) S Flokttindntx) = 0
n=—oo
and
(10b) Z Frok+1)n-1Jnlx) = exp ( §L2k+7)

n=-—oo

Equations (10a) and (10b) can be combined in the following equation, as may be shown by induction

) Z F2k+1)n+mdnfx) = Fp exp (5_ Lok+1 ) .

n=-oo

With k=0andm = 1, (11) becomes

}: Fn+1dnlx) = exp )‘2(‘
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