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1. INTRODUCTION 

As is well known, the problem of finding a sequence of real numbers, \ an J, n = 0,1,2, •••, which is both 
geometric (an+i = kan, n = 0, 1,2, —) and "Fibonacci" (an+i = an +an-i,n = 1, 2, - f with 3 0 - 1) admits a 
solution-in fact, a unique solution. (Cf. [ 1 ] ; for some extensions and geometric interpretations, see [2].) This 
"golden sequence" [1] is: 

1, 0, 02, - ,0 ' 7 , ..., 
where 0 = 1/2<1 + -Jh), the "golden mean," and satisfies the Fibonacci equation 

x2 - x - 1 = 0. 

In this paper, we pose an equivalent problem for a sequence of real, non-singular 2 x 2 matrices. Curiously, 
we will show that this problem admits an infinitude of solutions (i.e., that there exist infinitely many such 
"golden sequences"); that each such sequence is naturally related to each of the others (the relation given in 
familiar, algebraic terms of the generators of the sequences); and that these sequences are essentially the only 
such "golden sequences" of matrices (this, a simple consequence of a classical theorem of linear algebra). Finally, 
by applying two basic tools from the theory of matrices to the generators of these golden sequences, we deduce 
simply and naturally, some of the more familiar Fibonacci/Lucas identities [3] (including several which appear 
to be new); and the celebrated Binet formulas for the general terms of the Fibonacci and Lucas sequences. 

2. THE DEFINING EQUATIONS 
Let 

where x, y, u, v are to be determined subject to the constraint that xv - yu £ 0. Clearly, a necessary and suf-
ficient condition for the geometric sequence 

l,A,A2,A3,-,An,-
to be "Fibonacci" is that 
(0) A2 = A+I; 
that is, that 

( D { X u l ) - ( X u y , ) - { X u l ) + ('o0l)-

(The necessity of (0) is clear; further, (0) implies that 

An+1 = An +An"\ n = 12,3,-, 

so long as A is not nilpotent. This will be the case since we're restricting A to be nonsingular.) A simple calcu-
lation shows that the matrix equation in (1) is equivalent to the following system of scalar equations: 

(2) x2 + yu = x + 1, xy +yv = y, xu + uv = u, yu + v2 = v + 1, 

which we write in the following more convenient form: 

(3.1) x2 - x - 1 + yu = O 

(3.2) (x + v-1)y = 0 
419 
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(3.3) (x + v-1)u = 0 

(3.4) v2 - v - 1+yu = 0. 

We now investigate possible solution sets. 
Case 1. y = 0. Equations (3.1), (3^4) reduce to the Fibonacci equation, implyingx= | 0 , 0 ' } , v= | 0 , 0 ' } , 

where 0 = 1 / 2 (1+ v
/ 5 ) ,0 '= 1/2<1-V5"). 

(a) If u = 0, solution matrices of (1) are 
$ =(<po\ $ _-/M\ $ =(<t>'o\ $ = tp o \ 

(The reader not familiar with the elementary identities involving 0 and 0 ' is referred to either [1 , 3 ] . The 
easily proved identities we will need in the sequel are 

0+0' = 1, 0 - 0 ' = 75, 20-1=>/5# 0-0 ' = -1 , 0 2 = 0 + 1 , 
0 ' 2 = 0 ' + 1 , <(>n+1 = (j>n+(f>n-1

f rn+1 = <l>'n + <P'n-1, n = 0 , ± 1 , * 2 , - . ) 
Application of the appropriate identities shows that each of the sequences 

KV {*?}. {*f}. K") 
is golden (the second and fourth of these sequences are said to be trivial). 

(b) If uj= Q, equation (3.3) implies* + v= 1, and hence, that 

are solution matrices of (1). The general term of the golden sequence generated by ®ou >s easily shown to be 

*<* / \ F„£# 0 ' " ) ' 
where x ' 

Fi = 1, F2= I F3 = 2, F4 = 3, .», Fn = Fn^ + Fn.2, •», 
the Fibonacci sequence. (For elementary properties of the latter, cf. [ 1 , 4].) 

Case 2. y £ 0. 
(a) If u = 0, Eqs. (3.1) and (3.4) reduce to the Fibonacci equation, and Eq. (3.3) implies x + v= 7. The situa-

tion is similar to the one in Case Kb). We will return, however, to the matrix ®oy in Section 4. 
(b) Suppose u £ 0. Equation (3.3) implies x = 1 - v (consistent with Eq. (3.2)). Substitution for A- in Eq. 

(3.1) results in 
(1- v)2 -(1-v)-1+yu = 0, 

which after simplification reduces to v2 - v - 7 + yu = Q, consistent with Eq. (3.4). Thus, the assumptions 
y £ 0, u i= Q reduce the system (3.1) to (3.4) to the following equivalent system: 

(4.1) v = W±>j5-4yu) 

(4.2) x = 1 -v, 

where y £ 0, u j= 0, are otherwise arbitrary. It is in this form of the equations that we will systematically in-
vestigate various sets of solutions of (1) in the next section. 

3. EXAMPLES OF GOLDEN SEQUENCES 

Example 1: If we limit y, u to positive integer values in (4.1), then there is a unique pair which keeps the 
radicand positive: y = u= 1. In this case, we have two sets of solutions: 

x = Of v = 7, y = 1, u = 1; and x = 7, v = 0, y = 1, u = 1. 

The latter set results in the so-called "^-matrix" [3, 4 ] : 

and the corresponding golden sequence 
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where [3, 4] 

nn __ (Fn+i Fn \ 
Q ~\Fn fn-l) ' 

Example 2: As we observed in the previous section, and as we may now corroborate from Eq. (4.1), the pair 
y = u = 0, results in the matrix <I>0, and the corresponding golden sequence 

where 

^0 ~ [o (f>'nj -
A natural question is whether or not Q and $Q are related. A calculation shows that the characteristic equation 
for Q is 
(5) X 2 - X - 7 = 0, 
(the Fibonacci equation), the roots of which are 0and 0 \ the diagonal entries of <I>0. 

Thus, Eq. (5) is the characteristic equation for both Q and <l>0, and by the Cayley-Hamilton theorem, each of 
these matrices satisfies this equation. A comparison of Eqs. (5) and (0) shows that we have in fact a character-
ization for all matrices which give rise to golden sequences: 

Theorem 1. A necessary and sufficient condition for a matrix A to be a generator of a golden sequence 
is that its characteristic equation is the Fibonacci equation. 

Since our hypotheses on the matrix A imply that the characteristic equation is, in fact, the minimal equation 
for / I , we have 

Corollary 1. Any two matrix generators of non-trivial golden sequences of matrices are similar. 

Corollary 2. Q is similar to <£0; i.e., there exists a non-singular matrix 7" such that 

where the columns of Tare eigenvectors of Q corresponding respectively to the eigenvalues 0 and 0 ' . 
In what follows (see Section 4) we will require the matrix T, A straight-forward computation shows that 

' - ( * . } ) • • 
this is easily checked by observing that, in fact, QT= 7"$>0. 

From Corollary 1, we infer that 
an = mn

0r
1, 

and hence, that Qn is similar to $Q. Hence, 

det(Qn) = d e t f ^ A t r a c e d - trace ($n
0), 

and we have our first pair of Fibonacci identities: 

Corollary 3. (i) Fn+iFn-i - F2
n = (~Vn 

(i«) Fn+T + Fn-! = </>" + 0 ' n , 
a =1,2, 3,- - . 

Remark 1: Since Ln = Fn+1 + />,_/ [3 ] , where Ln is the general term of the Lucas sequence [3] 

(6) 1 , 3 , 4 , 7 , 1 1 , - , 

it would appear that line (ii) in Corollary 3 establishes a proof for the Binet formula [3 ] : Ln = (pn + §'n. How-
ever, the formula, Ln = Fn+i + Fn is generally established from the principal Binet formula [3 ] : 

Fn = (<j)n+(/>'" )/((p-(l)'). 
Although we have enough machinery at this point to establish the latter, the proof is not an immediate conse-
quence of the similarity invariants, "trace" and "determinant" (which we would like to limit ourselves to in 
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this section); thus, we defer this proof until Section 4. We do, however, establish the formula: Ln = Fn+i + Fn 

in the next example, within our own framework. 
Remark 2: Motivated from the general term, Qn, in Example 1, where 

nn _ (Fn+1 Fn \ 
Q ~ [Fn Fn-1) '• 

it is natural to inquire as to whether the sequence with general term 

pn L-n+1 Ln 

LA7 

is golden. However, since for n= 1, and setting P = P1, 

P = l 3 1 
1 2 

we see that P does not satisfy the Fibonacci equation; thus we conclude by Theorem 1 that Pn is not a golden 
sequence. Nevertheless, we will show in the next example that the Lucas numbers, (6), do, in fact, enter the 
picture in a natural way. 

Example 3: Referring again to Eqs. (4.1), (4.2), we take y = 7, u = 5/4; then v = 16, x = Y2, and we obtain the 
sequence generator 

and the corresponding golden sequence 

H = ( 1/2 1 \ n \ 5/4 1/2 ) ' 

(1 o\(k A lb* 1 \ rY* > \ (h- * \ (h-» * \ 

where the general term is easily shown to be 

Similarity of Qn (see Example 1) with Hn implies, by the invariance of trace, that 

(7) In = Fn+J + Fn.7 , 

and by determinant invariance, that 
1 ,2 5 r2 _ r r r2 

4Ln~4rn ~ rn+1'~n-1 ~ r
n , 

which after simplification becomes 

(8) L2
n= 4Fn+1Fn.1 + F2

n. 

Whereas, similarity of &n with Hn implies 
(9) Ln = 4>n + <p'n (Binet), 
(10) L2

n-5F2
n = 4(-1)n. 

Example 4: In (4.1), takey = 7, u = -7/ then one set of solutions is v = 2, x = -1, and we obtain the matrix 

' - ( H i ) . 
The general term of the corresponding golden sequence is easily seen to be 
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cv7 _ / -Fn-2 ^n \ 
b -\-F„ Fn+2)-

Similarity with $n gives 

(1D Fn+2-Fn-2 = <!>n+<t>'n 

and 

(12) F2
n-Fn+2Fn_2=(-1)n . 

NOTE: In what follows, we shall only use those similarity results which produce identities not already 
established. 

Similarity with Qn gives 

(13) Fn+1 + Fn^ = Fn+2-Fn-2, 
and 
(14) Fn+1Fn.1 + Fn+2Fn.2 = 2F2

n . 

Similarity with Hn gives 

(15) Ln = Fn+2-Fn„2 
and 

1,2 5 r2 _ r2 r r 

which after simplification becomes 

(16) L2
n = 9F2

n-4Fn+2Fn_2. 

Example 5: By taking y = 1, u = - 5 in (4.1), we obtain v = -2, x = 3, and the generator 

The corresponding golden sequence is 

11 0\ ( 3 /N 14 1\ ( 7 2\ ( 11 3\ .. 
\0 1 ) ' \ -5 -2 J ' \-5 -1 ) ' [ -5-2 ,-3 ) ' \ -5-3 -4 ) ' ' 

with general term 

Ln = I Ln+1 Fn \ 
\-5Fn -Ln.? ) -

i-n+1^n-1+Fn+1Fn^1 = 6Fn . 

5F*-Ln+iLn-i = (-1)". 

Lt + Un+jLn-j = 25F2
n. 

Ln+1-Ln-1 = Fn+2-Fn-2, 

2 
Ln+lLn-1 - Fn+2Fn-2

 = 4Fn-

Remark 3: Although there appear to be infinitely many more golden sequences we could investigate, subject 
only to the constraining equations (4.1) and (4.2), and thus, a limitless supply of Fibonacci identities to dis-
cover (or, rediscover) via the similarity invariants, "trace" and "determinant," we switch our direction at this 
point. 

Similarity with Qn 

(17) 

Similarity with &n 

(18) 
Similarity with Hn 

(19) 

implies 

implies 

gives 

and similarity with Fn gives 

(20) 
and 
(21) 
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In Section 4, we offer two final examples of generators of golden sequences, and compute their eigenvectors. 
With this new tool we will then establish Binet's formula for Fn in terms of 0, 0 ' and their powers, and the 
formulas [3] for 0 and 0 ' in terms of Fn and Ln. 

4. PROOFS OF SOME CLASSICAL FORMULAS 

In (4.1) take u = 0, y =/= 0, but for the time being arbitrary. Then v = (p, x = 0', and we have the matrix (cf. 
Section 1) 

Setting &y = &oy, one easily checks that we generate the golden sequence 

/ / 0 \ ( <P y \ / 02 y \ / 03 2y\ .. 
l o / j ' U f j ' U f 2 ] ' \ M ' 3 ) ' ' 

where the general term is easily seen to be 

$n = f 0" Fnv \ f 

y \ o 0 ' " / 

The eigenvectors, corresponding to the eigenvalue 0, are computed to be ( a
Q j , a £ 0; we single out the eigen-

vector corresponding to a = //while the eigenvectors corresponding to 0 ' are of the form 

Since 0 ' - 0 = - ^ 5 (see Section 2, or [3]), we take y = ^/s (so that <I>K = Q^Js ), and a = I Thus we have the 
two eigenvectors: 

( ' . ) • ( - ' , ) • 

corresponding to the eigenvalues 0 and 0', respectively. Set 

S 

Then by Corollary 1, 

which implies that 

( ; . ; ) • 

* ^ = s<s>n
0s-1, 

and hence, that 
(22) SQfe = S$% 

We write out Eq. (22): 

Multiplying out gives 

which implies that 

(<t>" Fn^5\ ( ; 1\ = ( 1 1\( d>n 0 \ 
\0 0 " ) \0 -1 j yo -1 ) \ 0 cjy'n J 

\0 -4>'n j \ 0 -<j>'n ) ' 

<t>" - Fn^5 = <P'n ; 
or 

(*) Fn - fcf. (Binet) 

For our final example, we will permit our generator matrix to be complex. In (4.1), take y = ¥2, u = 3; then 
take v= (1 + i)/2, so that* = (1 - i)/2, and we obtain the matrix 
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r = i (1 - i)/2 1/2 \ 
b \ 3 (1+1)12} ' 

The corresponding golden sequence is 

(1 0\ (%(1-i) % \ t1M3-i) % \ (1/2(4-2i) V* • 2 \ 
\0 1 ) ' \ 3 %(1+i))'\ 3 %(3 + i ) ) ' \ 3-2 V2(4+2i)) ' " ' 

with general term 
n Jy2(Ln-Fni) %Fn \ 

\ 3Fn %(Ln + Fni)J ' 

Proceeding as in the previous example, we take as eigenvector corresponding to the eigenvalue 0, the vector 

/ vjcp-Ad +i)j\ . 

and corresponding to 0', we take the eigenvector 

(%[^-1/2d +i)] \ 

Setting 

B = (%[<t>-y2(i + i)] %fa'-%(i+i)]\ 

we have by Corollary 1 that 

(23) CnB = B<&n
0. 

Performing the indicated multiplication in (23) results in the matrix equation 

/ % [Ln - Fni]/0 - y2(i + i)j + %Fn %[Ln - Fni] w - y2(i + ,)j + y2Fn \ 

\ Fn[(j> -y2(i + nj + y2[Ln + Fni] Fn[<$>' -y2(i + i)] + %[Ln + Fn,j J 

= ( <t>n/3[<t> - y2(i + nj 4>'n/3[ct>' -1/2(1+ /)] \ 

V 0" vn ) ' 

(a) Equating the corresponding entries in the second row, first column, and simplifying gives 

Ln = 24>n + (1- 2(f>)Fn . 
Solving for0/7 gives 

(24) 0 " = y2(Ln + ^5Fn). 

(b) Equating the corresponding terms in the first row, second column, and noting that these are identical to 
those obtained in (a) except that 0 is replaced by 0', we have 

L„ = 2(j)'n + (1-2<t)')Fn; 
or, solving for 0 ' " , that 

(25) 0 ' " = 1MLn-sj5Fn). 

Remark 4: Equating the two remaining pairs of corresponding entries in the above matrix equation results in 
lines (24) and (25). 

Remark 5: We chose the matrix 

* ^ - ( J JO 
to establish the principal Binet formula (line (*)) because of the simplicity of the proof. It should be noted, 
however, that a proof within the framework of the ^-matrix [4] is also possible. Since the machinery has al-
ready been set up in Example 2, and because of the historical importance of this matrix, we give the proof. We 
have already established (similarity) that 

i.e., that 
QnT = mn

Q; 
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Fn+1 Fn \ / 0 / \ / « t \ ( <t>" 0 

Multiplying out gives 
<t>Fn+1 + Fn Fn+1-<t>Fn \_( <f+1 4>'h 

DEC. 1976 

, 0 ^ +F^ Fn -<t>Fn^ r\<t>n (!>'(n~1) 

Equating corresponding terms results in the following equivalent system of equations: 
<t>Fn+1 + Fn = <S>n+1 

Fn+1-<t>Fn = <P'" 

Wn + F-n-, = <P" 

Fn - <i>Fn-j = <t>'(n~1) . 

Solving the second equation for Fn+1 and substituting this into the first equation, gives 
m,n+<s>Fn)+Fn = <f+1. 

Multiplying through by - 0 ' gives 

<S>'n+<t>Fn-VFn = <P"> 

Finally, solving for Fn gives the desired result: 

Fn 
= < £ ^ 

'" ~0 - 0 ' ' 
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[Continued from page 418.] 

From (9a) and (9b),we obtain 
(10a) £ F(2k+DnJnM = 0 

/7=-oo 

and 

(10b) £ F(2k+1)n-lJn(x) = exp ( | L2k+1 ) . 

Equations (10a) and (10b) can be combined in the following equation, as may be shown by induction 

(1D £ F(2k+1)n+mJn(x> = Fm exp \[~L2k+l] . 

With k = O and m = 1, (11) becomes 

YL Fn+lJn(x>= exp | 


