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In a previous note (Hilliker [7]) we derived, by an iterative argument, the following version of the Multinomial 
Expansion: If the inequalities 

(1) \aj\ < \al + a2 + - + a/-i\, 

for j = 2, 3, - , r all hold, then 
v n 
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where the summation is an iterated summation taken under all n; > 0, where / first takes on the va luer- 1, 
then r - 2, and so on until the last value, 1, is taken on. Here/7,5/,32, •••, ar are complex numbers with n not 
equal to a non-negative integer. On the other hand, one can assume a single inequality 

(3) \a2 + a3 + - + ar\ ;< \af\ 

and avoid the more complicated iterative argument by direct employment of the Multinomial Theorem for non-
negative integral exponents. The result is that the same formal expansion (2) holds, but this time the summation 
is taken under all n,> 0 with /?/ + ri2 + -•• + nr„j =j f o r /= 0, 1, 2, —. See, for example, Chrystal [2 ] , where a 
similar version is established. In this note we shall view these two forms from the perspective of a single Multi-
nomial Expansion valid under a certain divisibility condition on r. 

Let p be an integer with 1 ̂  p £. r - /, and assume that the congruence 

(4) r = 1 (mod p) 
holds. If the inequalities 

(5) \ar-(i+1)P+l + 3r-(i+Dp+2 + - + 3r-ip\ < \ai + a2 + ~' + ar-(j+1)p\, 

for \ = 0, 7, 2, ••• q, all hold, where the non-negative integer q is given by x= 7 + (q + Dp, then the formal ex-
pansion (2) holds. Here the summation is taken under all n,-> 0, 7 < i < r - 7, with 

(6) njp+1 + njp+2 + - + njp+p = tj, 

where y = Q, 7,2, —, and where j first takes on the value q then q - 7, and so on until the last value, 0, is taken 
on. 

Our argument rests upon Abel's proof of about 1825 of the Binomial Theorem: 

k=0 
for/7 andz complex and with \z\ < 1. See Abel [1 ] , See also Markushevich [9 ] , I, for this Maclaurin expansion. 
Here, as usual, we define zn as being that branch of the function f(z) = en o g z defined over the complexz-
plane with the non-positive real axis excluded, and with f[X) = 1. That is, the logarithmic function is given by 
logz = log \z\ + i argz with |argz| < m The quantities5/ + a2 + •- + 3rand ai are not 0 by the inequalities (5) 
with / = 0 and / = q, respectively. We will need to assume that they are not negative real numbers. Likewise, in 
the course of the proof we will need to assume that the quantities a-j + a2 + ••- + ar-(,+ i)p, for 0 </" < q— 1, 
are not negative real numbers. If n is a (negative) integer, these restrictions which guarantee single-valuedness, 
may, of course, be ignored. 
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As a first example, let p= 1. Then (4) automatically holds and q = r- 2. The inequalities (5) become identical 
with those of (1), and the summation conditions (6) become nj+1 = fy for/ = r — 2, r- 1, ••• ,0. Thus the first 
mentioned form is covered. 

As a second example, let/? = r - /. Then (4) holds, and q = 0. The inequalities (5) reduce to thesingie in-
equality (3). The summation conditions (6) reduce to the single condition n-j + n2 + - + nr-i = to. Conse-
quently, the second mentioned form is also covered. 

We begin by writing 

(7) (ai + a2 + - + ar)
n = [(a1 + a2 + - + ar„p) + (ar-p+1 + ar-0+2 + - + ar)]

 n 

I r \tQ f r-p \ n-tQ 

- E U ) £ * E - ) • 
t0=O \k=r-p+1 J \ f i - / / 

Here we have used the inequality (5) for the case / = 0. 
Since n - t0 $ 0, we may apply Formula (7) to the summation under c on the right side of (7). We may re-

peat this iterative process. After m iterations of (7), m > 0 and not too large, one obtains, by using (5) for / = 0, 
1 , - , w , 

00 / HP \ V 
(8) (ai + a2 + - + ar)

n = £ E l n - t O - - t ; - t H \ l £ ak ) 

t0rtX,-,tm=O J 0X J '\k=Hj+l)p+1 ) 

I r-(m+1)p \ n-t0~tl tm 

A £ ") 
First we apply the Multinomial Theorem for non-negative integral exponents to the summation under k on 

the right side of (8). Since this summation contains/? terms, we can write 

( MP \ *y 

^ \ ^ til "JP+1"JR+2 „."JP+P 

i L a>< = 2^~n—7^—in—r r-jp aHP-r aHp-P+i > 
where the summation is taken under all non-negative values of the/7 integers niP+i, njP+2, —, njp+p subject to 
the restruction (6). 

Secondly we observe that 
CIO) n: i n-io-11 i;-i \ =

 n(n -V-(n-n1-n2 nmp+p + 1) 
S ( n-tQ-t-, tj-l\ = P(n~ 7'-<n-n1-n2-'" 

j=0 \ V I toftjf-tn,! 

since, by (6), to+ti + -+tm = n-j +n2 + - + nmp+p . 
Finally we note that from (4) we can choose m in such a way t h a t r - (m + Dp = 7, so that the summation 

under c on the right side of (8) reduces to a single term. 
Thus it follows from (8), (9) and (10) that 

„ < A n(n-1)-(n-n1-n2 nr.f+1) 
aj + a2 + - + ar) = > _ —— 

1 * r 4—i ni! no! -nr-.i! 
t0^lf-,tm=0 

Y »nhn2 nr.1 n-n1-n2-—nr.1 
A ar ar„f -• a2 a-j , 

where the summation is first taken under tm, then under tm-i, and so on until the last summation is taken 
under to-

Our expository sequence of papers on the Binomial Theorem, the Multinomial Theorem, and various Multi-
nomial Expansions (Hilliker [3 ] , [4 ] , [5 ] , [6 ] , [7] and the present paper) will continue (Hilliker [8]). 
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[Continued from page 391.] 

Let qb denote one of thep/ and P denote qb~2(q- I)2, Now, 

(3) qb-2(q - 1)2 = qb~1(q -2 + 1/q). 

From (3), it can be seen that/3 > /, for all q, and that/3 > 8, for all q> 11. Furthermore, for# < 11, the fol-
lowing table can be obtained, by checking the right side of (3) for the case b = 1, and the left side of (3) for the 
case b> 2. 

Prime? 3 3 5 5 7 7 
Exponent/? 2 3 1 2 1 2 
P greater than 4 8 2 8 4 8 

or equal to 
Hence, (2) holds for /7- 1 possibly equal to 2-3, 2-32, 2-5, 2-7, 2-3.5, 2-3.7 fa = 1); 4-3, 4-5, 4-3-5 fa = 2); 

or 8-3 (a = 3); and (2) fails to hold for all other choices. These combinations lead to the primes 7, 11, 13, 19, 
31,43,61. 

Theorem 3. If p is a prime greater than 5, then the primitive roots are not consecutive. 

Proof. For the primes excluded in the Lemma, the primitive roots are: for 7 - 3 , 5; for 11 - 2, 6, 7, 8; 
for 1 3 - 2, 6,7, 11; for 19 - 2, 3, 10, 13, 14, 15; for 31 - 3, 11, 12, 13, 17, 21, 22, 24; for 43 - 3, 5, 12, 18, 
19, 20, 26, 28, 29, 30, 33, 34; for 61 - 2, 6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59. None of these 
primes have consecutive primitive roots. 

Now, let p denote a prime for which the Lemma applies and suppose that k is a positive integer for which 
k2 <p- 1. Then, 

k2-(k- I)2 = 2-k- 1 < 2-k < 2sjp-1 < (p(p - 1). 

Therefore, consecutive squares appear within a span less than <p(p - 1). Since squares are quadratic residues, 
and therefore not primitive roots, no string of consecutive primitive roots can be of length <p(p - //Conse-
quently, the primitive roots are not consecutive. 


