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Here is recorded a fascinating sequence of sequences which arise in the first column of matrix inverses of ma-
trices containing certain columns of Pascal's triangle. The convolution arrays of these sequences are computed, 
leading to determinant relationships, a general formula for any element in the convolution array for any of these 
sequences, and a class of combinatorial identities. 

The sequence S1 = \ 1, 1, 2, 5, 14, 42, — j is the sequence of Catalan numbers [1 ] , and the sequence 

S2 = \ 1, 1, 3, 12, 55, — | appeared in an enumeration problem given by Carlitz [2, p. 125]. 

1. SEQUENCES ARISING FROM INVERSES OF PASCAL'S TRIANGLE MATRICES 

We form a series of n x n matrices/7/, /'= 0, 1, 2, 3, ••-, by placing every (i + 1)st column of Pascal's triangle 
on and below the main diagonal, and zeroes elsewhere. Then, PQ contains Pascal's triangle itself, while Pj con-
tains every other column of Pascal's triangle and P2 every third column. We call the inverse of P; the matrix 
Pr1 and record the convolution arrays for the sequences S; which arise as the absolute values of the elements in 
the first column of Pj 

i = 2 

in the tables which follow. 
Table 1.1 Non-Zero Elements of the Matrices/7/1 and/*, 
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Next, we will compute the convolution arrays for the sequences S,- which are tabulated below as well as estab-
lish the form of the nth term. 

Table 1.2 The SequencesStArising from Matrices T^"1 

nth term 

— ( 2 n ) 
n+ 1 \ n ) 

h-(3;) 
hi4;) 
h{5:) 

1 

0 

1 

2 

3 

4 

Si 
1 1, I 1, I -

1, 7, 2t 5, 14, -

7, 7, 3, 12, 55, • 

1, 1, 4, 22, 140, 

1, 1, 5, 35, 285, 

2n 

JH 

4n 

k 1,1,k+1,-~ -JL- l(k+Dn\ =L((k+1)n\ 

It is important to note that convolutions of the sequences S,- arisingfrom PJ1 have as their ith convolution 
that same sequence, less its first element. Let S,(x) be the generating function for the sequence S,-, and let * de-
note a convolution. We easily calculate: 

/ = 1: (1, 1, 2, 5, 14, ->)*(1, I 2, 5, 14, •••) = 11, 2, 5, 14, -j 

(1.1) xS\(x) = Sjx) -1 

i = 2: (1, 1, 3, 12, 55, -)*(1, 1, 3, 12, 55, -)*(1, 1, 3, 12, 55, - ) = (1, 3, 12, 55, -) 

(1.2) xS\M = S2(x)- 1 

i = 3: (1, 1, 4, 22, -)*(1, 1, 4, 22, -)*(1, 1, 4, 22, -)*(1, 1, 4, 22, -) = (1, 4, 22, -) 

(1.3) xS%(x) = SJxJ- 1. 

In fact, it will be shown by the Lemma [3] following, that 

(1.4) xSJ+1 = Sj(x)- 1, 

which will allow an easy construction of the convolution array for S,-. 

Lemma: Two infinite matrices (denoted by giving successive column generators), 

(fm(x),xfm+k(x),x2fm+2k(x), . .J and (Am(x),xAm+k(x),x2Am+2k(x), ~) 

are inverses if 
A(x)f(xAk(x)) = 7. 

Here, we take f(x) = 1/(1 - x), the generating function for the first column of the Pascal matrix, and \s\A(x) = 
3,(-x), where S;(x) is the generating function for the sequence S,-, and take k = i + 7. Then 

7 = A(x)f(xAk(x)) = Si{-x)[1-xS?1(-x)]-1. 
or 

1-xSJ+1(-x) = Sj(-x) 

which establishes (1.4) upon replacing (-x) byx and rearranging terms. 
Also notice that, in a convolution triangle, the generating function for the / f column is the / power of the 

generating function forthefirstcolumn. Putting this together with (1.4) gives us a neat way to generate the con-
volution triangle for any one of the sequences S,-. For example, for / = 7, 
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xtffx) S7(x)- 7 
(1.5) xSk+1(x) = s'iM-S'fUx) 

Sk
1(x) = sft(x)+xSk

1
 + 1(x) 

which means that we have a Pascal-like rule of formation for the elements of the convolution triangle. An ele-
ment in the kth column in the sum of elements in the (k - l)st and (k + 1)st columns as shown in the convolu-
tion triangle forS7 (the Catalan numbers) given below: 

Table 1.3 Convolution Triangle for S1 : 1, 1,2, 5, 14, 42, ••• 

Scheme: z = x + y 
1 
1 
2 
5 
14 

1 
2 
5 
14 
42 

1 
3 
9 
28 
90 

1 
4 
14 
48 
165 

1 
5 
20 
75 
275 

1 
6 
27 
110 
429 1 J—v 

X \ Z \ 

Notice that, except for spacing, the rule of formation is the same as that for Pascal's triangle. For Pascal's tri-
angle in rectangular form, the scheme would be a diagram like below, where z = x + y: 

rk,..<_rk-1,,,..^2M 

Similarly, for / = 2, we obtain 

(1.6) Sk
2(x) = S^'1(x)+xSk

2 

which leads to the generation of the convolution triange for $2 below. 

Table 1.4 Convolution Triange forS 2 : 1, 1, 3, 12, 55, -

1 1 1 1 1 1 - Scheme: z = x + y 
1 2 3 4 5 6 
3 7 12 18 25 33 
12 30 55 88 130 182 
55 143 273 455 700 1020 

Sk
2(x) = Sk

3'
1(x) + xSk

3
+3(x) 

For/ = 3, we have 

(1.7) 

which gives a scheme similar to those preceding, using a grid in which the column entries to be added are sepa-
rated by three spaces, as computed below: 

Table 1.5 Convolution Triangle for S3: 1, 1,4,22, 140, 

1 1 1 1 1 - Scheme: z = x+y 
2 3 4 5 6 
9 15 22 30 39 

52 91 140 200 272 
340 

1 
1 
4 

22 
140 EI 612 969 1425 1995 

Returning for a moment to the matrices PJ and comparing them to the convolution arrays for the sequences 
just given, notice that, ignoring signs, P^1 contains the alternate columns of the Catalan convolution array, and 
that PJ is always composed of columns of a convolution array for the sequence in the first column. In fact, 
except for signs, the matr ix /3^ always contains the zeroth column, the (i + Dst column, the 2(i + 1)n column, 
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— , and has its (k + 1) column given by the k(i + 1)st column of the convolution array for the sequence Sj, 
(Notice that the count of the columns for matrices begins with one, but for convolution arrays begins with zero.) 
We have proved this already in applying the Lemma. 

Now, to generalize, the formulation of the convolution triangle for Sj would require a grid in which column 
entries to be added were separated by / spaces, so that the generating function S/(x) for the zeroth column of 
the convolution array for Sj satisfies 

(1.8) S$(x) = SJT1(x)+xSf+1M, 
where, of course, Sf- (x) is the generating function for the (k - 1)st column, k = 1,2, 3, —. 

Then, notice that this means that each row in the convolution array for any of the sequences S,- is the partial 
sum of the previous row from some point on. Thus, each convolution array written in rectangular form has its 
/ row an arithmetic progression of order i, / = 0, 1,2, 3, •••, and the constant of each of these progressions is 
1. By previous results [4 ] , we have 

Theorem 1.1. The determinant of any n x n array taken to include the row of 1's in the convolution array 
written in rectangular form for any of the sequences Sj has value one. 

It will also be shown in a later paper that the determinant of any n x n array taken to include the row of inte-
gers (1, 2, 3, 4, —) and its first column the (j - 1)st column of the convolution array has value 

2. GENERATION OF CONVOLUTION TRIANGLES FOR SEQUENCES Sj FROM PASCAL'S TRIANGLE 

The convolution triangles for these sequences Sj are also available from Pascal's triangle in a reasonable way. 
If one looks at Pascal's triangle as given in Table 2.1, 

Table 2.1 Pascal's Triangle 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 

and takes diagonals parallel to the central diagonal 

1, 2, 6, 20, 20, 70, 252, •-, ( ^ ) 
one sees that 

1/1, 2/2, 6/3, 20/4, 70/5, 252/6, ••• = 7,12, 5, 14, 42, »• 

2(1/2, 3/3, 10/4, 35/5, 126/6, - ) = 1,2, 5, 14, 42, ••• 

3(1/3, 4/4, 15/5, 56/6, 210/7, •-) = 1, 3, 9, 28, 90, ••• 

4(1/4, 5/5, 21/6, 84/7, 330/8, - ; = 1,4, 14, 48, 165, - , 

where successive parallel diagonals of Pascal's triangle produce successive columns of the Catalan convolution 
triangle. 

To write the convolution triangle for the sequence S2, one uses the diagonal 

1,3, 15,84,495, - , ( ^ ) , - , 
and diagonals parallel to it: 

1/1, 3/3, 15/5, 84/7, 495/9, ••• = 1, 1, 3, 12, 55, ••• 

2(1/2, 4/4, 21/6, 120/8, •>•) = 1, 2, 7, 30, ••• 
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3(1/3, 5/5, 28/7, 165/9, •••) = 1,3, 12, 55, ••• 
4(1/4, 6/6, 36/8, 220/10, •••) = 1,4, 18, 88, •• 

5(1/5, 7/7, 45/9, 286/11, -) = 1, 5, 25, 130, - . 

Notice that we again produce successive columns of the convolution triangle from successive diagonals of Pascal's 
triangle. 

As a final example, we write the convolution triangle for S3 from the diagonal 

1,4,28,220, 1820,-, (4
/?

A7) 
and diagonals parallel to it: 

///, 4/4, 28/7, 220/10, 1820/13, ••• = 1, 1, 4, 22, 140, ••• 
2(1/2, 5/5, 36/8, 286/11, 2380/14, -) = 1, 2, 9, 52, 340, ••• 

3(1/3, 6/6, 45/9, 364/12, - ) = 1,3, 15, 91, -
4(1/4, 7/7, 55/10, 455/13, -) = 1, 4, 22, 140, -
5(1/5, 8/8, 66/11, 560/14, -) = 1, 5f 25, 200, - . 

Before we continue to the general case, observe the arithmetic progressions appearing in the denominators. 
For the Catalan numbers, the sequence Sf, the common difference is one; for S2, two; and for S3, three. For 
S3, for example, we find the parallel diagonals from Pascal's rectangular array by beginning in the leftmost col-
umn and counting to the right one and down 4 throughout the array. To get the sequence^ itself, we multiply 
the Pascal diagonal 1,4, 28, 220, - by 1 and divide by 1,4, 7, 10, 13, •••; to get the first convolution or SI, we 
multiply the first diagonal parallel to 1,4, 28, 220, ••• by 2 and divide by 2, 5, 8, 11, •••; for the second convo-
lution or S3, we take the next parallel diagonal, multiply by 3, and divide by 3, 6, 9, 12, — ;and for £3, we 
multiply the kth diagonal by k and divide by k, k + 3, k + 6, k + 9, •••. 

To find the diagonals easily, write Pascal's triangle in rectangular form: 

Table 2.2 Pascal's Triangle in Rectangular Form 

1 

8 

36 

120 

330 

792 
1716 

which diagonal is found by beginning in the leftmost column and counting to the right one and down (i + 1) 
throughout the rectangular Pascal array. The diagonals which lead to the convolution array for S,- are parallel 
and below this first diagonal. To find the (k - 1)stconvolutionS*,we multiply the k^ diagonal by/rand di-
vide by k, k + 1, k + 2i, k + 3i, •••. The diagonals used to find the convolution triangle forS2 are marked in the 
array above. 

Now, we can find all the positive integral powers of the Catalan sequence in the convolution sense. However, 
let us not neglect the zero or negative powers. Here, we must adopt a convention, and call 0/0 = 1 and -0 /0 = 
- 1 . We find sf, S'-j1, and S~y by following the same process as given above but using an extended Pascal's tri-
angle which includes coefficients for the binomial expansion of (1 +x)~ . 

1 
\ 

- > 
< > 
1 > 

1 

1 1 
\ 2 3 

\ \ 6 

\ 4 \V° 
vox15 

\ 6 \ \ 2 1 

7 \ 28 ̂  

1 
4 

10 
20 
35 
56 
84 

1 
5 

15 
35 
70 

126 

210 

1 
6 

21 
56 

126 

252 

462 

1 
7 

28 
84 

210 

462 

924 
\ \ \ 

Then the sequence Sf- is given by 
/ t«+ 1)n \ 
+ 1 \ " I 
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To see this in perspective, let us write down the parallel diagonals and the numbers to multiply and divide by. 

si 
SI 
Si 

s° 
s:1 

s-s 

3(1/3, 4/4, 15/5y 56/6, 210/7, •-

2(1/2, 3/3, 10/4, 35/5, 126/6, •• 

1(1/1, 2/2, 6/3, 20/4, 70/5, -0 

0(1/0, 1/1, 3/2, 10/3, 35/4, - . ) 

= 1 ,3 ,9 ,28 ,90 , -

= 1 ,2 ,5 ,14 ,42 , -

1, 1,2,5, 1 4 , -

1, 0, 0, 0, 0, -
- K 1 / - 1 , 0/0, 1/1,4/2,15/3,56/4,..) = 1 , - 1 , - 1 , - 2 , - 5 , - 1 4 , -

-2 (1 / -2 , - 1 / - 1 , 0/0, 1/1, 5/2, - ) = 1, - 2 , - 1 , - 2 , - 5 , -

Thus, you see that if we write down the extra terms from "Pascal's attic," the process works in reverse to ob-
tain all columns of the Catalan convolution triangle. This process will provide the zero and negative powers for 
any of the sequences S/. One can also complete the Catalan convolution array to the left to provide negative 
integral powers by using its rule of formation in reverse, which is the following scheme: 

x = z - y 

The rule of formation can be rewritten to work to the left for the convolution array for any of the sequences 

_ j y 

X \ Z \ 

Si-
Now, write the complete Pascal array down in rectangular form as 

1 
-7 
21 

-35 
35 

-21 

1 
-6 
15 

-20 -
15 
-6 

sgular arrangement 

1 1 
-6 - 5 
10 6 
-4 - 1 

0 0 
0 0 

1 
- 4 -

3 
0 
0 
0 

1 
-5 
10 

-10 
5 

-1 

. Now 

1 
-3 

1 
0 
0 
1 

1 
_4 

6 
-4 

1 
0 

1 
-3 

3 
-1 

0 
0 

1 
-2 

1 
0 
0 
0 

if we move the/ 

1 
-2 
0 
0 
1 
6 

1 
-1 

0 
1 
6 

21 

1 
0 
1 
4 

15 
56 

1 
-1 

0 
0 
0 
0 

1 ' 
0 
0 ' 
0 
0 ' 
0 

th row/place 

1 
1 
3 

10 
35 

126 

1 
2 
6 

20 
70 

252 

1 
I 2 
I 3 
I 4 
I 5 

6 

JS to th 

1 
3 

10 
35 

126 
462 

1 
3 
6 

10 
15 
21 

e left, 

1 
4 

15 
56 

210 
792 

1 
4 

10 
20 
35 
56 

/ = 0,1 

1 
5 

21 
84 

330 

1 1 -.. 
5 6 ••• 

15 21 •.. 
35 56 ••• 
70 126 •.. 

126 252 -

, 2, - , we form 

1 1 
6 7 

28 36 
120 165 
495 715 

Now, all diagonals which are parallel to 1, 2, 6, 20, 70, — are all vertical. By proper processing, as just described, 
we can obtain all columns of the Catalan convolution triangle. To obtain the column which gives us S1. we mul-
tiply the column above which starts with 1, k+ 1, - , by k and divide successive terms by k, k+ 1, k + 2, k + 3, 
k + 4, •••, for k = O, ±1, ±2, ±3, - , where we adopt the convention that 0/0 = 1 and -0 /0 = - 1 . If we begin 

th , again with the regular arrangement, but this time move the i " row 2i spaces to the right, we obtain an arrange-
ment which has co in 1 , -

1 
-5 
21 

-84 
330 

2 , 6 , -
1 

-4 
15 

-56 
210 

20, 70, 
1 

-3 
10 

-35 
126 

., as 
4 
1 

-2 
6 

-20 
70 

1 
-1 

3 
-10 

35 

1 
0 
1 

-4 
15 

1 
1 
0 

-1 
5 

1 
2 
0 
0 
1 

1 
3 
1 
0 
0 

1 
4 
3 
0 
0 

1 
5 
6 
1 
0 
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With the same processing as above, we obtain the Catalan convolution array with alternating signs. This shows 
that Pascal's triangle itself contains all that the inverses of the Pascal matrices gives from properly processed 
columns in the Pascal convolution array. By similar movement of the rows of Pascal's triangle and proper pro-
cessing, we can obtain sjf, i = 0, 1, 2, 3, - ; k = 0,±1, ±2, - . 

As we already know, the Catalan sequence Sx and its convolution triangle are obtained by processing properly 
the diagonal 1, 2, 6, 20, 70, —, and those diagonals parallel to it. Since Pascal's triangle has symmetry, we can 
use the parallel diagonals either above or below the central diagonal, when Pascal's triangle is written in rectan-
gular form as in Table 4.4. Then, S1 is obtained by multiplying the parallel diagonal which begins with 1, k + 1, 
— by k and dividing successive entries by k, k+ 1, k+2, —. Now, suppose that we try the same process for the 
Catalan convolution array, using diagonals parallel to 7, 2, 9, 48, 275, - , the central diagonal of the array, as 
given in Table 1.3. 

1/1, 2/2, 973, 48/4, 275/5, - = 1, 1, 3, 12, 55, - = S2 

2(1/2, 3/3, 14/4, 75/5, 429/6, - ) = 1, 2, 7, 30, 143, - = S\ 

3(1/3,4/4,20/5,110/6,637/7,-) = 1 ,3 ,12,55,273, - = S\ 

4(1/4,5/5,27/6,154/7,-) = 1 ,4 ,18 ,88 , - = ^ 

Surely you recognize the convolution array for the next of our sequences, S2! If this same process is used on 
the convolution array for 5,, one obtains the convolution array fo rS/ * / . See [8 ] , [9 ] , [10]. 

3. A SECOND GENERATION OF THE SEQUENCES S,- FROM PASCAL'S TRIANGLE 

These arrays can be obtained in yet another way from the diagonals of Pascal's triangle written in rectangular 

form. To obtain the convolution array for S2 = \ 1, 1, 3, 12, 55, 273, —J, we multiply successive diagonals 
and divide by successive members of an arithmetic progression with constant difference 3 as follows: 

1(1/1,4/4,2177,120/10,-) = 1, 1 ,3 ,12 , - = S2 

2(1/2, 5/5, 28/8, 165/11, - ) = 1,2, 7, 30, - = S\ 

3(1/3, 6/6, 36/9, 220/12, - ) = 1, 3, 12, 55, - = S\ 

4(1/4, 7/7, 45/10, 286/13, - ) = 1, 4, 18, 88, - = S* 

The diagonals are obtained by beginning in the row of ones in the Pascal rectangular array and counting down 
one and righttwo, or by beginning in the column of ones and counting to the right one and down two. The mul-
tiplier is the same as the exponent ofS2/ and the arithmetic progression used is k, k + 3, k + 6, —, k + 3n, n = 
O, 1,2,-. 

To obtain the Catalan sequence, and its convolution triangle, we can use the diagonals obtained by counting 
down one and right one beginning in the column of ones (or in the row of ones) so that the beginning diagonal 
is 1, 3, 10, 35, - , and dividing by successive terms of arithmetic progressions with constant difference two as 
follows: 

1(1/1,3/3,10/5,35/7,126/9,-) = 1 , 1 , 2 , 5 , 1 4 , - = S, 

2(1/2, 4/4, 15/6, 56/8, 210/10, - ) = 1, 2, 5, 14, 42, - = S? 

3(1/3,5/5,21/7,84/9,330/11,-) = 1 ,3 ,9 ,28 ,90 , - = S* 

Again the multiplier is the same as the exponent for Sk
p and the arithmetic progression used for the divisors is 

k + 2n, n = 0, 1,2, - . 
Then, we have a dual system working here for extracting the convolution array of the sequence S; from Pas-

cal's triangle written in rectangular form. To obtain the convolution array for S,, we find successive diagonals 
from Pascal's array by beginning in the column of ones and counting right one and down i, taking the first di-
agonal as 1,1 + 2, - . (Or, we can work to the right, taking the diagonals successively that are parallel to the di-
agonal beginning with 1, i + 2, —, obtained by counting down one and right/throughout the array.) 
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To write S,-, we take the kth diagonal which begins 1, k + i + 1, —, multiply by k, and divide successively by 
the successive terms of the arithmetic progression k + in, n = 0, 1, 2, —. Explicitly, we write themth element of 
S? as 

(i+ 1)m+k • 

') k + im \ m 

for 1 = 0, 1,2,-; k= 1,2,3,-; m = 0, 1,2,-. 
Many cases were shown which verify that the mth term of the (k - 1)st convolution of the sequence Sj, de-

noted by Sj(m,k), is given by 

(3.D 'M'rfe [<i+1)m
m

+k-1)-
m = 0, 1, 2, - ; k = 1, 2, 3, - ; i = 0, 1,2, — . Applying (1.8) leads to a rule of formation for the convolution 
array for any sequence Sj, 

(3.2) Sj(m, k) = Sj(m, k- 1) + s,(m -1,k + i). 

Assume that (3.1) holds for all convolutions for the first (m - 1) terms, and holds for the first (k - ^convolu-
tions for the first m terms. Then sf(m,k) again will have the desired form of (3.1) as shown by 

l(i+1)m+k-1 \[* k - 1 # im+k - 1 + k m rn 1 
\ m l\k - 1 + im ' im + m + k — 1 k + im im + m + k — 1 J 

l(i+ 1)m + k - 1 \ kfim +m+k - 1) 
\ m I ' (k+im)(im+m+k- 1) 

4. THE SEQUENCE OF SEQUENCES S, TAKEN AS A RECTANGULAR ARRAY 

Next, suppose one simply considers the sequence of sequences Sj as the rows of a rectangular array, and con-
siders the progressions appearing in the columns. We omit the first term for each sequence Sj 

Table 4.1 The Sequences Sj 

So-

St: 

S>: 

sy-
S4: 

S5: 

S>: 

57: 

Order of 
AP: 

Constant: 

Form: 1 

1 
1 
1 
1 
1 
1 
1 
1 

0 
1 

-/ 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 

2° 

1 
5 

12 
22 
35 
51 
70 
92 

2 
3 

37 

1 
14 
55 

140 
285 
506 
819 

1,240 

3 
16 
4 2 

1 
42 

273 
969 

2,530 

5,481 

10,472 

18,278 

4 
125 
53 

1 
132 

1,428 
7,084 

23,751 

62,832 

141,776 

285,384 

5 
1296 

64 

1 
429 

7,752 

53,820 

231,880 

749,398 

1,997,688 

4,638,348 

6 
16807 

I5 

1 
1,430 

43,263 

420,732 

2,330,445 
9,203,634 

28,989,675 

77,652,024 

7 
26^144 

8* nn-2 

Notice that the kth column is an arithmetic progression of order (k - 1), with common difference k , This 
means, using Eves' Theorem [4 ] , [5 ] , 

Eves' Theorem: Consider a determinant of order n whose Ith column (i = 1, 2, —, n) is composed of any 
n successive terms of an arithmetic progression of order ft - 7,/with constant a,% The value of the determinant 
is the product ^ /^2 ••• an -



1976] FROM INVERSES OF PASCAL'S TRIANGLE MATRICES 403 

that we can write Theorems 4.1 and 4.2. 

Theorem 4.1: The determinant of any # x n array taken to include the column of 1's in the sequence 
of sequences S,- rectangular array has value 

U J". 
1=1 

Theorem 4.2: Take a determinant of order n with its first column in the column of integers, and its 
first row along the row of ones of the rectangular sequence of sequences S; array. The value of the determinant 
is 

n+1 . 0 n r2. 
1=1 

Proof: Subtract the (i - 1)st row from the Ith row, / = n, n - 1, - , 2, to obtain a determinant whose kth 

column is an arithmetic progression of order k- 1 with constant (k + i)'k+"~2
 ancj apply Eve's Theorem. 

Further, the following result seems to be true. 

Conjecture: Take an/? xn determinant such that its first column is the column of integers in the sequence 
of sequences S; rectangular array and its first row is the kth row, k= 1,2,3, •••. Then its determinant is given by 

To prove that the constants of the arithmetic progressions have the form given, we quote Hsu [6, p. 480]: 

m < n 
m = n 

r=0 
2 

and substitute n' = n - 1, t = n , s = -n, m = n - /, to obtain 

(4.D i £ ' <-v'(n7')(n2
az?)-i<«"-'>*»"*. 

where we also make use of the known general form for the/ft*'7 term of S,-. 

5. A CLASS OF COMBINATORIAL IDENTITIES 
- 1 -1 

Returning to the first section, in Table 1.1 we computed matrices/^- . Now, since P,Pl = I, we can write an 
entire class of combinatorial identities. Notice that, since we are dealing with infinite matrices such that all non-
zero elements appear on and below the main diagonals, P,PJ -/ for any n x n matrices/3,-, Pj , and / formed 
from the n x n blocks in the upper left of the original infinite matrices. Since/5/ contains elements taken from 
Pascal's triangle, it is a simple matter to write the element in its (n + 1)st row and (j+ 1)st column as 
(5.1) Pi(n,j)= {"1%). n = 0,1,2,-; j = 0,1,2,-.. 

Now, the elements in PJ1 are the same as those in the convolution array for 5/, except for sign. When / = /, we 
have the Catalan convolution array, and the element of P*}1 in i t s /W 1)st row and (p + 1)st column is given by 
the (r - p)th element of the (2p)th convolution of 5 ; , or the (r - p)**1 element in the sequence S2p+1,which 
is, by (3.1), 

pVr.Pt - t-1)"s,(r-p,*+1) = h ^ ^ ( A ) 
while , „ . . \ 

Pl(n,j) =("+>) . 

Since P7P~^ = I, the element in the (n + 1)st row and (p + 1)st column of/ is given by 
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0 = J2 P^n'^P%P)' n ? p. 
i=0 

Now, when/7 = ft we have the first column of/3;7, of the sequence Sf of Catalan numbers, and 

« '-E#f(7)(V') 
J=o 

which was given as (3.100) by Gould [7 ] . 
Since n >p + 1 gives non-diagonal elements of /, we also have the more general 

(5.3) 0=yUlt^±JLl 2j \, n+j\ 
*-* P+1+J \ J-P l\ 2j I 

We can further generalize by not restricting i. Let the element in the (r + 1) row and (p + 1) column 
o f / ^ b e 
(5.4) pffr, p) = (- m(r -p,ip + 1) = Lzll^JLlkJLlJ ( ' + J j 

Since PfPJ = I, for/7 > p + 1 we obtain a non-diagonal element, giving the very general identity 

(* R) n = V (-VJ~P[(1+i)P+ 11 l J + a \ I » + 4 \ 
<L* p + 1+ij \ J-P I \J + 'J I ' 
J=P 

for/ = 0, 12,3, -;p = 0, 1, 2,->;mdn > p + 1. 
Notice that, f o r /= 0, we have Pascal's triangle in both P,and PJ1, leading to 

(5.6) ' - E ' - ^ U P H / ) ' 
J=P 

and, when / = 0 and p = 0, to the familiar identity, 
n 

(5.7) 0=Y< (~1>j (•)• 
1=0 

For/? = 0 in (5.5), we are in the first column, and 

a* - t ^ ['Y)[Ui)-t^{';')[i) 
j=0 j=0 

gives a recursion relation for the terms of S,-, as 

(5.9) o = £(-i)iSi(n) ( ; ; / ) , 
y=0 

where $,Y/v /J is the/f /7 term of the sequence S- . 
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A Bessell function of orders may be defined as follows: 

(1) J (x)=Y ^ / * \n+2k 

x=o 
It may be easily shown that for integral n,J^(x) is the coefficient of Un in the expansion of 

"p [!("-£)] 
i.e., 

(2) " 4 J ( « - £ ) ] - I ; un^> 
A7=-CQ 

Now let 
(3) u- 1-= L2k+1, 

where L2k+1 's a Lucas number defined by 
(4) L1 = 1, L2 = 3, Ln = Ln-^ + Ln-2 . 
where n is any integer. 

Equation (3) becomes u - uL2k+i -1 = 0with roots 
2k+i _ ,. , /p X2k+1 2k+1 

where 

( i ^ ) " « a ^ and (i^pT'.p-

a _- l±Jl and & - L^H 
are the roots of the well known quadratic 
(5) 0 2 = <f>+1. 

[Continued on page 418.] 


