$$
\begin{aligned}
s^{n}\left(a^{n}+\beta^{n}\right)= & s^{n} L_{n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} L_{r i}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i}\left(a^{r}\right)^{i} \\
& +\sum_{i=0}^{n}\binom{n}{i}(-1)^{i}\left(\beta^{r}\right)^{i}=\left(1-a^{r}\right)^{n}+\left(1-\beta^{r}\right)^{n}
\end{aligned}
$$

from which it is readily verified that $r=0,1,2,3$ and $5=0,1,-1,-2$, respectively, are solutions. Also solved by Herta T. Freitag, Ralph Garfield, and the Proposer.

$\star \star \star \star \star \star$

[Continued from page 92.]

ADVANCED PROBLEMS AND SOLUTIONS

$$
\left\{\begin{array}{l}
a^{2} A(n)+a B(n)=0 \\
(a-\beta) C(n)=0 \\
A(n)+a B(n)=0
\end{array}\right.
$$

It follows at once that

$$
A(n)=B(n)=C(n)=0 \quad(n \geqslant 0)
$$

It is evident cinat a similar result holds for the Lucas numbers and similar sequences of numbers.
Also solved by P. Tracy and P. Bruckman.
*

